Xiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295369/publications.pdf

Version: 2024-02-01

117625 144013 3,400 75 34 57 h-index citations g-index papers 77 77 77 4799 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	One-Dimensional Arrays of Co3O4Nanoparticles:Â Synthesis, Characterization, and Optical and Electrochemical Properties. Journal of Physical Chemistry B, 2004, 108, 16401-16404.	2.6	249
2	Synthesis of \hat{I}^2 -FeOOH and \hat{I}_\pm -Fe2O3nanorods and electrochemical properties of \hat{I}^2 -FeOOH. Journal of Materials Chemistry, 2004, 14, 905-907.	6.7	200
3	High Efficient Photodegradation and Photocatalytic Hydrogen Production of CdS/BiVO ₄ Heterostructure through <i>Z</i> -Scheme Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 303-309.	6.7	178
4	Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology, 2005, 16, 37-39.	2.6	174
5	Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. Journal of Alloys and Compounds, 2011, 509, 6585-6588.	5.5	133
6	High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance. Crystal Growth and Design, 2006, 6, 2163-2165.	3.0	132
7	Synthesis of novel copper sulfide hollow spheres generated from copper (II)–thiourea complex. Journal of Crystal Growth, 2004, 263, 570-574.	1.5	125
8	Single-Source Approach to Cubic FeS2Crystallites and Their Optical and Electrochemical Properties. Inorganic Chemistry, 2005, 44, 951-954.	4.0	102
9	Hierarchical Growth and Shape Evolution of HgS Dendrites. Crystal Growth and Design, 2005, 5, 347-350.	3.0	95
10	Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol–gel strategy. Materials Letters, 2010, 64, 486-488.	2.6	95
11	An ethylene glycol reduction approach to metastable VO2nanowire arrays. Nanotechnology, 2004, 15, 1685-1687.	2.6	80
12	Preparation and characterization of ternary Cu–Sn–E (E=S, Se) semiconductor nanocrystallites via a solvothermal element reaction route. Journal of Crystal Growth, 2003, 256, 368-376.	1.5	79
13	Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method. Journal of Crystal Growth, 2005, 277, 467-470.	1.5	74
14	Synthesis, Photocatalytic and Electrocatalytic Activities of Wormlike GdFeO ₃ Nanoparticles by a Glycol-Assisted Sol–Gel Process. Industrial & Engineering Chemistry Research, 2013, 52, 9130-9136.	3.7	71
15	Synthesis and optical properties of single-crystalline bismuth selenide nanorods via a convenient route. Journal of Crystal Growth, 2005, 276, 566-570.	1.5	68
16	A facile approach to pure-phase Bi2Fe4O9 nanoparticles sensitive to visible light. Applied Surface Science, 2014, 321, 144-149.	6.1	65
17	Citric acid-assisted sol–gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material. Journal of Crystal Growth, 2003, 256, 123-127.	1.5	64
18	Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln=La, Sm) nanoparticles by synergistic catalysis. Materials Research Bulletin, 2014, 50, 18-22.	5.2	60

#	Article	IF	Citations
19	Low-temperature synthesis of \hat{l}_{\pm} -Fe2O3 nanoparticles with a closed cage structure. Chemical Physics Letters, 2004, 384, 391-393.	2.6	58
20	Low temperature synthesis of metastable lithium ferrite: magnetic and electrochemical properties. Nanotechnology, 2005, 16, 2677-2680.	2.6	55
21	Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain-assisted route. Journal of Crystal Growth, 2004, 263, 491-497.	1.5	51
22	Synergistic photocatalytic activity of LnFeO3 (Ln=Pr, Y) perovskites under visible-light illumination. Ceramics International, 2014, 40, 13813-13817.	4.8	48
23	Fabrication and electrochemical properties of α-Fe2O3 nanoparticles. Journal of Crystal Growth, 2004, 269, 489-492.	1.5	47
24	Magnetically Separable CdS/ZnFe ₂ O ₄ Composites with Highly Efficient Photocatalytic Activity and Photostability under Visible Light. ACS Applied Nano Materials, 2018, 1, 831-838.	5.0	47
25	Multifunctional Ag nanoparticles in heterostructured Ag2MoO4/Ag/AgBr cubes with boosted photocatalytic performances. Solar Energy, 2018, 170, 124-131.	6.1	44
26	Large-scale synthesis of \hat{l}_{\pm} -LiFeO2 nanorods by low-temperature molten salt synthesis (MSS) method. Journal of Crystal Growth, 2004, 265, 220-223.	1.5	43
27	Preparation of hexagonal-MoO3 and electrochemical properties of lithium intercalation into the oxide. Materials Research Bulletin, 2005, 40, 1751-1756.	5.2	43
28	Facile solvothermal synthesis of single-crystalline Bi2S3 nanorods on a large scale. Materials Chemistry and Physics, 2006, 95, 154-157.	4.0	42
29	A facile mixed-solvothermal route to \hat{I}^3 -Bi2MoO6 nanoflakes and their visible-light-responsive photocatalytic activity. Materials Research Bulletin, 2013, 48, 3761-3765.	5.2	42
30	Construction of all-solid-state Z-scheme 2D BiVO4/Ag/CdS composites with robust photoactivity and stability. Applied Surface Science, 2019, 498, 143900.	6.1	40
31	Reduced graphene oxide wrapped CdS composites with enhanced photocatalytic performance and high stability. Ceramics International, 2016, 42, 372-378.	4.8	39
32	Holey g-C3N4 nanosheet wrapped Ag3PO4 photocatalyst and its visible-light photocatalytic performance. Solar Energy, 2019, 191, 70-77.	6.1	39
33	Synthesis of Sb2O3 nanorods under hydrothermal conditions. Materials Research Bulletin, 2005, 40, 469-474.	5.2	35
34	<i>In situ</i> formation of CsPbBr ₃ /ZnO bulk heterojunctions towards photodetectors with ultrahigh responsivity. Journal of Materials Chemistry C, 2018, 6, 12164-12169.	5.5	35
35	Direct sulfidization synthesis of high-quality binary sulfides (WS2, MoS2, and V5S8) from the respective oxides. Materials Chemistry and Physics, 2004, 87, 327-331.	4.0	34
36	A Single-source Approach to Metastable Ni3S4Crystallites and Their Optical Properties. Chemistry Letters, 2004, 33, 1294-1295.	1.3	34

3

#	Article	IF	Citations
37	Photocatalytic activities of multiferroic bismuth ferrite nanoparticles prepared by glycol-based sol–gel process. Journal of Sol-Gel Science and Technology, 2011, 60, 1-5.	2.4	33
38	Two-dimensional CsPbBr ₃ /PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29, 085201.	2.6	33
39	Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visible-light induced photocatalytic property. Journal of Alloys and Compounds, 2015, 620, 228-232.	5.5	32
40	Ternary GO/Ag 3 PO 4 /AgBr composite as an efficient visible-light-driven photocatalyst. Materials Research Bulletin, 2018, 97, 189-194.	5.2	32
41	Enhanced photocatalytic efficiency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles. Solar Energy, 2020, 195, 271-277.	6.1	30
42	One-pot synthesis and optical properties of monodisperse ZnSe colloidal microspheres. Applied Physics A: Materials Science and Processing, 2010, 99, 651-656.	2.3	28
43	Controllable synthesis, photocatalytic and electrocatalytic properties of CeO ₂ nanocrystals. RSC Advances, 2015, 5, 41506-41512.	3.6	27
44	EDTA-assisted template-free synthesis and improved photocatalytic activity of homogeneous ZnSe hollow microspheres. Ceramics International, 2013, 39, 5213-5218.	4.8	22
45	Enhanced photocatalytic behavior and excellent electrochemical performance of hierarchically structured NiO microspheres. RSC Advances, 2014, 4, 35614-35619.	3.6	22
46	Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite. Solar Energy, 2021, 224, 455-461.	6.1	22
47	Synthesis and electrochemical properties of nanocrystalline V2O5 flake via a citric acid-assistant sol–gel method. Journal of Crystal Growth, 2005, 281, 463-467.	1.5	21
48	CeVO 4 nanofibers hybridized with g -C 3 N 4 nanosheets with enhanced visible-light-driven photocatalytic activity. Solid State Communications, 2018, 269, 11-15.	1.9	21
49	A reduction–nitridation route to boron nitride nanotubes. Applied Physics A: Materials Science and Processing, 2005, 81, 1035-1037.	2.3	20
50	Novel Bi12TiO20/g-C3N4 composite with enhanced photocatalytic performance through Z-scheme mechanism. Journal of Materials Science, 2018, 53, 10039-10048.	3.7	20
51	Synthesis and electrochemical performance of amorphous hydrated iron phosphate nanoparticles. Journal of Crystal Growth, 2005, 274, 214-217.	1.5	19
52	A facile route to well-dispersed single-crystal silver nanoparticles from [AgSO3]â^ in water. Journal of Alloys and Compounds, 2011, 509, 7515-7518.	5.5	17
53	Fabrication and characterization of hexagonal wire-like ZnO. Journal of Crystal Growth, 2003, 253, 357-360.	1.5	16
54	Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles. Journal of Sol-Gel Science and Technology, 2016, 79, 107-113.	2.4	15

#	Article	IF	Citations
55	Template-free solution approach to synthesize ZnSe hollow microspheres. Applied Physics A: Materials Science and Processing, 2005, 80, 511-513.	2.3	14
56	Characterization and optimization of Ln1.7Sr0.3CuO4 (Ln=La, Nd)-based cathodes for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2010, 502, 472-476.	5.5	14
57	Ultraviolet-Emitting Bi ₂ O _{2.33} Nanosheets Prepared by Electrolytic Corrosion of Metal Bi. Journal of Physical Chemistry C, 2010, 114, 864-867.	3.1	13
58	Synthesis of nanocrystalline MoN from a new precursor by TPR method. Journal of Materials Science, 2003, 38, 3473-3478.	3.7	12
59	The U-shaped Fe(1â^'x)S micro-slots: growth, characterization, and magnetic property. Journal of Crystal Growth, 2005, 277, 314-320.	1.5	12
60	Polyol-mediated synthesis of single-crystal tellurium nanowires directly from polycrystalline powder. Applied Physics A: Materials Science and Processing, 2005, 80, 1443-1445.	2.3	11
61	Cobalt-free Sr0.7Y0.3CuO2+ \hat{l} as a cathode for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39, 1030-1038.	7.1	11
62	Synthesis and luminescence of single crystalline Bi2O3 nanosheets. Science China Technological Sciences, 2011, 54, 19-22.	4.0	10
63	Fabrication and characterization of nanosized single-crystalline LiNi0.5Mn0.5O2. Journal of Crystal Growth, 2004, 267, 184-187.	1.5	9
64	Synthesis of single crystalline layered lithium manganese oxide nanorods. Solid State Communications, 2004, 132, 783-785.	1.9	7
65	Converting Y(OH) 3 nanofiber bundles to YVO 4 polyhedrons for photodegradation of dye contaminants. Materials Research Bulletin, 2015, 68, 276-282.	5.2	7
66	Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells. Solid State Sciences, 2016, 61, 195-200.	3.2	7
67	Synthesis and Electrochemical Properties of Single-crystal CdV2O6Nanowire Arrays. Chemistry Letters, 2004, 33, 1374-1375.	1.3	6
68	Layered O2-Li2/3(Ni1/3â^'xMn2/3â^'xM02x)O2 (M=Cr, Co, x=0.05) cathode materials for Li-ion rechargeable batteries. Solid State Ionics, 2005, 176, 1043-1049.	2.7	6
69	Assembled CuO Hollow Spheres from Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1423-1426.	0.9	6
70	Formation of Uniform Single-Crystalline Bismuth Sulfide Nanowires Under Mixed-Solvent Condition. Journal of Nanoscience and Nanotechnology, 2006, 6, 2042-2045.	0.9	2
71	Spinel Lithium Manganese Oxide Nanoparticles: Unique Molten Salt Synthesis Strategy and Excellent Electrochemical Performances. Journal of Nanoscience and Nanotechnology, 2009, 9, 6518-6522.	0.9	2
72	Controllable Synthesis and Enhanced Photoactivity of Twoâ€Dimensional Bi 2 WO 6 Ultraâ€Thin Nanosheets. ChemistrySelect, 2021, 6, 5381-5386.	1.5	1

XIONG WANG

#	Article	IF	CITATIONS
73	A Single-Source Approach to Metastable Ni3S4 Crystallites and Their Optical Properties ChemInform, 2005, 36, no.	0.0	0
74	Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties. Advanced Materials Research, 0, 152-153, 81-85.	0.3	0
75	Hydrothermal Synthesis and Visible-Light-Driven Photocatalytic Activities of Bi ₂ WO ₆ Uniform Hierarchical Microspheres. Advanced Materials Research, 2014, 887-888, 181-184.	0.3	0