Toby Hallam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295333/publications.pdf Version: 2024-02-01

TORY HALLAM

#	Article	IF	CITATIONS
1	MXene supported surface plasmons on telecommunications optical fibers. Light: Science and Applications, 2022, 11, 22.	7.7	30
2	Low-temperature synthesis and electrocatalytic application of large-area PtTe ₂ thin films. Nanotechnology, 2020, 31, 375601.	1.3	23
3	Nitrogen as a Suitable Replacement for Argon within Methaneâ€Based Hotâ€Wall Graphene Chemical Vapor Deposition. Physica Status Solidi (B): Basic Research, 2019, 256, 1900240.	0.7	2
4	Growth of 1T′ MoTe ₂ by Thermally Assisted Conversion of Electrodeposited Tellurium Films. ACS Applied Energy Materials, 2019, 2, 521-530.	2.5	30
5	Fieldâ€Dependent Electrical and Thermal Transport in Polycrystalline WSe ₂ . Advanced Materials Interfaces, 2018, 5, 1701161.	1.9	17
6	Terahertz Spectroscopy of Amorphous WSe2 and MoSe2 Thin Films. Materials, 2018, 11, 1613.	1.3	8
7	All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356, 69-73.	6.0	391
8	Controlling Defect and Dopant Concentrations in Graphene by Remote Plasma Treatments. Physica Status Solidi (B): Basic Research, 2017, 254, 1700214.	0.7	11
9	Tuneable photoconductivity and mobility enhancement in printed MoS ₂ /graphene composites. 2D Materials, 2017, 4, 041006.	2.0	13
10	Rhenium-doped MoS2 films. Applied Physics Letters, 2017, 111, .	1.5	40
11	Ex-situ plasma doping of MoS <inf>2</inf> thin films synthesised by thermally assisted conversion process: Simulations and experiment. , 2017, , .		0
12	Structural and Electrical Investigation of MoS ₂ Thin Films Formed by Thermal Assisted Conversion of Mo Metal. ECS Journal of Solid State Science and Technology, 2016, 5, Q3016-Q3020.	0.9	6
13	All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Applied Physics Letters, 2016, 109, .	1.5	68
14	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004.	2.0	172
15	Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid-State Electronics, 2016, 125, 39-51.	0.8	36
16	A New 2H-2H′/1T Cophase in Polycrystalline MoS ₂ and MoSe ₂ Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 31442-31448.	4.0	33
17	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476.	1.6	111
18	Investigations of vapor phase deposited transition metal dichalcogenide films for future electronic applications. , 2015, , .		1

TOBY HALLAM

#	Article	IF	CITATIONS
19	Large area suspended graphene for nano-mechanical devices. Physica Status Solidi (B): Basic Research, 2015, 252, 2429-2432.	0.7	16
20	Growth of high-density carbon nanotube forests on conductive TiSiN supports. Applied Physics Letters, 2015, 106, 083108.	1.5	26
21	Controlled Folding of Graphene: GraFold Printing. Nano Letters, 2015, 15, 857-863.	4.5	27
22	Interface and strain effects on the fabrication of suspended CVD graphene devices. Solid-State Electronics, 2015, 108, 75-83.	0.8	12
23	Investigation of 2D transition metal dichalcogenide films for electronic devices. , 2015, , .		4
24	Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. Chemical Communications, 2015, 51, 16553-16556.	2.2	39
25	Optimisation of copper catalyst by the addition of chromium for the chemical vapour deposition growth of monolayer graphene. Carbon, 2015, 95, 789-793.	5.4	1
26	Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy. Applied Physics Letters, 2014, 104, .	1.5	8
27	Inkjet-defined field-effect transistors from chemical vapour deposited graphene. Carbon, 2014, 71, 332-337.	5.4	17
28	Field Emission Characteristics of Contact Printed Graphene Fins. Small, 2014, 10, 95-99.	5.2	40
29	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	3.1	144
30	Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymerâ€Assisted Transfer. Advanced Materials Interfaces, 2014, 1, 1400115.	1.9	98
31	Field emission applications of graphene. , 2014, , .		1
32	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	2.8	48
33	Growth optimisation of high quality graphene from ethene at low temperatures. Chemical Physics Letters, 2014, 595-596, 192-196.	1.2	9
34	Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports. Physica Status Solidi (B): Basic Research, 2014, 251, 2389-2393.	0.7	9
35	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	1.6	72
36	Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sensors and Actuators B: Chemical, 2013, 188, 571-575.	4.0	77

TOBY HALLAM

#	Article	IF	CITATIONS
37	Highâ€Performance Sensors Based on Molybdenum Disulfide Thin Films. Advanced Materials, 2013, 25, 6699-6702.	11.1	435
38	Functionalisation of graphene surfaces with downstream plasma treatments. Carbon, 2013, 54, 283-290.	5.4	77
39	Origami-based spintronics in graphene. Europhysics Letters, 2013, 104, 47001.	0.7	23
40	Polymer-assisted transfer printing of graphene composite films. Physica Status Solidi (B): Basic Research, 2013, 250, 2668-2671.	0.7	8
41	Production of 3Dâ€ s haped graphene via transfer printing. Physica Status Solidi (B): Basic Research, 2012, 249, 2515-2518.	0.7	13
42	Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571.	6.0	6,190
43	The surface-state-induced Stark effect in ZnO nanocrystals. Journal of Physics Condensed Matter, 2010, 22, 395009.	0.7	2
44	Local Charge Trapping in Conjugated Polymers Resolved by Scanning Kelvin Probe Microscopy. Physical Review Letters, 2009, 103, 256803.	2.9	61
45	Atomic-scale silicon device fabrication. International Journal of Nanotechnology, 2008, 5, 352.	0.1	28
46	Phosphorus and hydrogen atoms on the (001) surface of silicon: A comparative scanning tunnelling microscopy study of surface species with a single dangling bond. Surface Science, 2006, 600, 318-324.	0.8	20
47	The fabrication of devices in silicon using scanning probe microscopy. , 2005, , .		0
48	STM characterization of phosphine adsorption on STM-patterned H:Si(001)surfaces. , 2005, , .		1
49	Effective removal of hydrogen resists used to pattern devices in silicon using scanning tunneling microscopy. Applied Physics Letters, 2005, 86, 143116.	1.5	11
50	Scanning probe microscopy for silicon device fabrication. Molecular Simulation, 2005, 31, 505-515.	0.9	50
51	Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy. Applied Physics Letters, 2004, 85, 1359-1361.	1.5	49
52	Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy. Nano Letters, 2004, 4, 1969-1973.	4.5	150
53	STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer. Applied Surface Science, 2003, 212-213, 319-324.	3.1	16
54	Challenges in Surface Science for a P-in-Si Quantum Computer — Phosphine Adsorption/Incorporation and Epitaxial Si Encapsulation. Surface Review and Letters, 2003, 10, 415-423.	0.5	2