Senthil Arumugam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	βIII-Tubulin Structural Domains Regulate Mitochondrial Network Architecture in an Isotype-Specific Manner. Cells, 2022, 11, 776.	1.8	2
2	The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology?. Annual Review of Biomedical Data Science, 2022, 5, 341-366.	2.8	4
3	FtsZ: The Force Awakens. Journal of the Indian Institute of Science, 2021, 101, 31-38.	0.9	0
4	Rapid whole cell imaging reveals a calcium-APPL1-dynein nexus that regulates cohort trafficking of stimulated EGF receptors. Communications Biology, 2021, 4, 224.	2.0	6
5	Rac1 activation can generate untemplated, lamellar membrane ruffles. BMC Biology, 2021, 19, 72.	1.7	13
6	Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nature Communications, 2021, 12, 3675.	5.8	27
7	To be more precise: the role of intracellular trafficking in development and pattern formation. Biochemical Society Transactions, 2020, 48, 2051-2066.	1.6	11
8	Toolbox of Diverse Linkers for Navigating the Cellular Efficacy Landscape of Stapled Peptides. ACS Chemical Biology, 2019, 14, 526-533.	1.6	28
9	The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes and Development, 2019, 33, 550-564.	2.7	24
10	Ordered and Disordered Segments of Amyloid-β Drive Sequential Steps of the Toxic Pathway. ACS Chemical Neuroscience, 2019, 10, 2498-2509.	1.7	21
11	The Lipids of the Early Endosomes: Making Multimodality Work. ChemBioChem, 2017, 18, 1053-1060.	1.3	14
12	Mechanism of Shiga Toxin Clustering on Membranes. ACS Nano, 2017, 11, 314-324.	7.3	93
13	Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotechnology, 2016, 11, 1112-1119.	15.6	142
14	Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton. Essays in Biochemistry, 2015, 57, 109-119.	2.1	26
15	Cytoskeletal Pinning Controls Phase Separation in Multicomponent Lipid Membranes. Biophysical Journal, 2015, 108, 1104-1113.	0.2	52
16	Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature, 2015, 517, 493-496.	13.7	276
17	MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1192-200.	3.3	66
18	Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 2014, 16, 592-603.	4.6	248

SENTHIL ARUMUGAM

#	Article	IF	CITATIONS
19	Cytoskeletal Pinning Prevents Large-Scale Phase Separation in Model Membranes. Biophysical Journal, 2013, 104, 252a.	0.2	1
20	MinC, MinD, and MinE Drive Counter-oscillation of Early-Cell-Division Proteins Prior to Escherichia coli Septum Formation. MBio, 2013, 4, e00856-13.	1.8	45
21	The Dynamics of Somatic Exocytosis in Monoaminergic Neurons. Frontiers in Physiology, 2012, 3, 414.	1.3	18
22	Surface Topology Engineering of Membranes for the Mechanical Investigation of the Tubulin Homologue FtsZ. Angewandte Chemie - International Edition, 2012, 51, 11858-11862.	7.2	53
23	Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 269-280.	6.6	19
24	Threeâ€photon microscopy shows that somatic release can be a quantitatively significant component of serotonergic neurotransmission in the mammalian brain. Journal of Neuroscience Research, 2008, 86, 3469-3480.	1.3	47
25	A high-resolution large area serotonin map of a live rat brain section. NeuroReport, 2008, 19, 717-721.	0.6	14