Michael F Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295239/publications.pdf Version: 2024-02-01

MICHAEL F RROWN

#	Article	IF	CITATIONS
1	Flexible memory processing by rats: Use of prospective and retrospective information in the radial maze Journal of Experimental Psychology, 1985, 11, 453-469.	1.7	130
2	Does a cognitive map guide choices in the radial-arm maze?. Journal of Experimental Psychology, 1992, 18, 56-66.	1.7	75
3	Choice Criterion Effects in the Radial-Arm Maze: Maze-Arm Incline and Brightness. Learning and Motivation, 1993, 24, 23-39.	1.2	48
4	Spatial guidance of choice behavior in the radial-arm maze Journal of Experimental Psychology, 1993, 19, 195-214.	1.7	36
5	Same/different discrimination by bumblebee colonies. Animal Cognition, 2013, 16, 117-125.	1.8	36
6	Within-trial dynamics of radial arm maze performance in rats. Learning and Motivation, 1986, 17, 190-205.	1.2	32
7	Evidence for spatial working memory in honeybees (Apis mellifera) Journal of Comparative Psychology (Washington, D C: 1983), 1994, 108, 344-352.	0.5	31
8	Remembrance of places you passed: Social spatial working memory in rats Journal of Experimental Psychology, 2007, 33, 213-224.	1.7	31
9	Spatial and configural factors in compound stimulus processing by pigeons. Learning and Behavior, 1992, 20, 41-55.	3.4	25
10	In the dark II: spatial choice when access to extrinsic spatial cues is eliminated. Learning and Behavior, 1997, 25, 335-346.	3.4	25
11	Honey bees are predisposed to win-shift but can learn to win-stay. Animal Behaviour, 1995, 50, 1041-1045.	1.9	24
12	The effects of maze-arm length on performance in the radial-arm maze. Learning and Behavior, 1990, 18, 13-22.	3.4	21
13	Maze-arm length affects a choice criterion in the radial-arm maze. Learning and Behavior, 1993, 21, 68-72.	3.4	21
14	Control of choice by the spatial configuration of goals Journal of Experimental Psychology, 1996, 22, 438-446.	1.7	21
15	Training rats to search and alert on contraband odors. Applied Animal Behaviour Science, 2002, 77, 217-232.	1.9	19
16	Retroactive interference in rat radial maze performance: The role of point of delay interpolation and the similarity and amount of interpolated material. Learning and Behavior, 1985, 13, 116-120.	3.4	18
17	Spatial pattern learning in the radial arm maze. Learning and Behavior, 2006, 34, 102-108.	1.0	17
18	Facilitation of learning spatial relations among locations by visual cues: Implications for theoretical accounts of spatial learning. Psychonomic Bulletin and Review, 2009, 16, 306-312.	2.8	17

MICHAEL F BROWN

#	Article	IF	CITATIONS
19	In the dark: Spatial choice when access to spatial cues is restricted. Learning and Behavior, 1997, 25, 21-30.	3.4	16
20	The existence and extent of spatial working memory ability in honeybees. Learning and Behavior, 1997, 25, 473-484.	3.4	16
21	Spatial pattern learning in rats: Conditional control by two patterns. Learning and Behavior, 2000, 28, 278-287.	3.4	16
22	No evidence for overshadowing or facilitation of spatial pattern learning by visual cues. Learning and Behavior, 2002, 30, 363-375.	3.4	16
23	Social Influences on Rat Spatial Choice. Comparative Cognition and Behavior Reviews, 0, 6, 5-23.	2.0	15
24	Element and compound matching-to-sample performance in pigeons: The roles of information load and training history Journal of Experimental Psychology, 1990, 16, 185-192.	1.7	14
25	The touch screen system in the pigeon laboratory: An initial evaluation of its utility. Behavior Research Methods, 1990, 22, 123-126.	1.3	14
26	Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations. Animal Cognition, 2010, 13, 341-349.	1.8	14
27	Working memory for color in honeybees. Learning and Behavior, 1998, 26, 264-271.	3.4	13
28	Spatial pattern learning in rats: Control by an iterative pattern Journal of Experimental Psychology, 2001, 27, 407-416.	1.7	13
29	Sex differences in spatial search and pattern learning in the rat. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 364-371.	1.3	13
30	Social working memory: Memory for another rat's spatial choices can increase or decrease choice tendencies. Learning and Behavior, 2008, 36, 327-340.	1.0	12
31	Evidence for a shift in the choice criterion of rats in a 12-arm radial maze. Learning and Behavior, 1989, 17, 12-20.	3.4	11
32	Spatial patterns and memory for locations. Learning and Behavior, 2004, 32, 391-400.	3.4	11
33	The relation between response and attentional shifts in pigeon compound matching-to-sample performance. Learning and Behavior, 1984, 12, 41-49.	3.4	10
34	Social effects on spatial choice in the radial arm maze. Learning and Behavior, 2009, 37, 269-280.	1.0	9
35	Negative information: Both presence and absence of spatial pattern elements guide rats' spatial choices. Psychonomic Bulletin and Review, 2002, 9, 706-713.	2.8	8
36	Social effects on rat spatial choice in an open field task. Learning and Motivation, 2011, 42, 123-132.	1.2	8

MICHAEL F BROWN

#	Article	IF	CITATIONS
37	Dissociation of stimulus compounds by pigeons Journal of Experimental Psychology, 1987, 13, 80-91.	1.7	7
38	Exposure to Spatial Cues Facilitates Visual Discrimination but Not Spatial Guidance. Learning and Motivation, 1998, 29, 367-382.	1.2	6
39	Archerfish respond to a hunting robotic conspecific. Biological Cybernetics, 2021, 115, 585-598.	1.3	6
40	Spatial pattern learning in rats: control by an iterative pattern. Journal of Experimental Psychology, 2001, 27, 407-16.	1.7	6
41	No preference for prosocial helping behavior in rats with concurrent social interaction opportunities. Learning and Behavior, 2021, 49, 397-404.	1.0	5
42	Wildcat World: Simulation programs for teaching basic concepts in psychological science. Behavior Research Methods, 1999, 31, 14-18.	1.3	3
43	A search for the locus of information overload in pigeon compound matching-to-sample performance. Bulletin of the Psychonomic Society, 1991, 29, 337-340.	0.2	2
44	Precedence of spatial pattern learning revealed by immediate reversal performance. Behavioural Processes, 2010, 85, 252-264.	1.1	2
45	The promise of cyborg intelligence. Learning and Behavior, 2017, 45, 5-6.	1.0	2
46	Bees and abstract concepts. Current Opinion in Behavioral Sciences, 2021, 37, 140-145.	3.9	2
47	Factors modulating social influence on spatial choice in rats Journal of Experimental Psychology Animal Learning and Cognition, 2015, 41, 286-300.	0.5	2
48	Introduction to the special issue of behavioral processes in honor of Donald A. Riley. Behavioural Processes, 2010, 85, 207-208.	1.1	1
49	A consistent but non-coincident visual pattern facilitates the learning of spatial relations among locations. Psychonomic Bulletin and Review, 2014, 21, 114-120.	2.8	1
50	Five on one side: Personal and social information in spatial choice. Behavioural Processes, 2015, 112, 130-137.	1.1	1
51	No Evidence for Effects of Fitness Relevance or Sex Differences in a Virtual Hunting and Gathering Task. Evolutionary Psychological Science, 2016, 2, 84-100.	1.3	1
52	Assessing the Significance of Tail Actuation Strategy in Ethorobotic Fish. , 2018, , .		1
53	Cognitive behaviorism: A tribute to the contributions of Thomas Zentall. Behavioural Processes, 2015, 112, 1-2.	1.1	0
54	Specificity and flexibility of social influence on spatial choice. Learning and Behavior, 2019, 47, 47-58.	1.0	0