List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2013, 457, 158-167.	2.6	205
2	Chitosan-Coated Diatom Silica as Hemostatic Agent for Hemorrhage Control. ACS Applied Materials & Interfaces, 2016, 8, 34234-34243.	4.0	155
3	Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 439-447.	2.5	106
4	Hydroxybutyl chitosan thermo-sensitive hydrogel: a potential drug delivery system. Journal of Materials Science, 2013, 48, 5614-5623.	1.7	90
5	Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydrate Polymers, 2017, 157, 596-602.	5.1	87
6	Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery. Carbohydrate Polymers, 2016, 136, 867-874.	5.1	83
7	Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydrate Polymers, 2019, 203, 10-18.	5.1	83
8	Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. International Journal of Biological Macromolecules, 2016, 91, 716-723.	3.6	80
9	Chitosan/Diatomâ€Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Advanced Healthcare Materials, 2020, 9, e2000951.	3.9	80
10	Immobilization of Coacervate Microcapsules in Multilayer Sodium Alginate Beads for Efficient Oral Anticancer Drug Delivery. Biomacromolecules, 2014, 15, 985-996.	2.6	74
11	Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. International Journal of Biological Macromolecules, 2016, 89, 471-476.	3.6	73
12	Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydrate Polymers, 2013, 94, 634-641.	5.1	70
13	Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. International Journal of Biological Macromolecules, 2019, 138, 321-333.	3.6	60
14	Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydrate Polymers, 2016, 138, 49-58.	5.1	59
15	Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 197-207.	2.0	55
16	In situ controlled release of stromal cell-derived factor-11± and antimiR-138 for on-demand cranial bone regeneration. Carbohydrate Polymers, 2018, 182, 215-224.	5.1	54
17	Multifunctional chitosan/dopamine/diatom-biosilica composite beads for rapid blood coagulation. Carbohydrate Polymers, 2018, 200, 6-14.	5.1	53
18	In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent. Carbohydrate Polymers, 2014, 113, 304-313.	5.1	49

#	Article	IF	CITATIONS
19	Biocompatibility, cellular uptake and biodistribution of the polymeric amphiphilic nanoparticles as oral drug carriers. Colloids and Surfaces B: Biointerfaces, 2013, 103, 345-353.	2.5	48
20	Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chemical Communications, 2015, 51, 1453-1456.	2.2	46
21	Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. Journal of Materials Chemistry B, 2018, 6, 7834-7841.	2.9	44
22	Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control. Carbohydrate Polymers, 2020, 236, 116051.	5.1	43
23	pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydrate Polymers, 2019, 223, 115072.	5.1	42
24	A thermosensitive hydroxybutyl chitosan hydrogel as a potential co-delivery matrix for drugs on keloid inhibition. Journal of Materials Chemistry B, 2016, 4, 3936-3944.	2.9	40
25	pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. Journal of Materials Chemistry B, 2018, 6, 586-592.	2.9	40
26	Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug. International Journal of Biological Macromolecules, 2016, 85, 1-8.	3.6	38
27	Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydrate Polymers, 2016, 136, 860-866.	5.1	37
28	Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 492-501.	2.5	35
29	Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. International Journal of Biological Macromolecules, 2017, 105, 924-930.	3.6	35
30	A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. International Journal of Biological Macromolecules, 2019, 125, 78-86.	3.6	35
31	Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating. Carbohydrate Polymers, 2016, 136, 307-315.	5.1	34
32	Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International Journal of Biological Macromolecules, 2018, 107, 463-469.	3.6	34
33	Optimization and characteristics of preparing chitosan microspheres using response surface methodology. Journal of Applied Polymer Science, 2013, 127, 4433-4439.	1.3	32
34	Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydrate Polymers, 2020, 229, 115557.	5.1	32
35	Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. International Journal of Biological Macromolecules, 2020, 147, 931-936	3.6	31
36	Thermo/photo dual-crosslinking chitosan-gelatin methacrylate hydrogel with controlled shrinking property for contraction fabrication. Carbohydrate Polymers, 2020, 236, 116067.	5.1	31

#	Article	IF	CITATIONS
37	Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel. Journal of Functional Foods, 2019, 63, 103573.	1.6	29
38	Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids and Surfaces B: Biointerfaces, 2016, 148, 147-156.	2.5	28
39	A composite sponge based on alkylated chitosan and diatom-biosilica for rapid hemostasis. International Journal of Biological Macromolecules, 2021, 182, 2097-2107.	3.6	28
40	Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. Journal of Biomaterials Applications, 2017, 31, 1182-1195.	1.2	27
41	The green and stable dissolving system based on KOH/urea for homogeneous chemical modification of chitosan. International Journal of Biological Macromolecules, 2018, 120, 1103-1110.	3.6	27
42	Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. International Journal of Biological Macromolecules, 2017, 102, 468-474.	3.6	26
43	Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology. Carbohydrate Polymers, 2018, 189, 280-288.	5.1	24
44	Isolation of fucoxanthin from Sargassum thunbergii and preparation of microcapsules based on palm stearin solid lipid core. Frontiers of Materials Science, 2017, 11, 66-74.	1.1	23
45	Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. International Journal of Biological Macromolecules, 2017, 105, 566-574.	3.6	23
46	Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. International Journal of Biological Macromolecules, 2017, 104, 157-164.	3.6	22
47	Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. International Journal of Biological Macromolecules, 2017, 94, 170-180.	3.6	22
48	Development of alginate hydrogel/gum Arabic/gelatin based composite capsules and their application as oral delivery carriers for antioxidant. International Journal of Biological Macromolecules, 2019, 132, 1090-1097.	3.6	22
49	Thrombin immobilized polydopamine–diatom biosilica for effective hemorrhage control. Biomaterials Science, 2021, 9, 4952-4967.	2.6	22
50	Influence of the physicochemical characteristics of diatom frustules on hemorrhage control. Biomaterials Science, 2019, 7, 1833-1841.	2.6	20
51	Optimization of the preparation conditions of thermo-sensitive chitosan hydrogel in heterogeneous reaction using response surface methodology. International Journal of Biological Macromolecules, 2019, 121, 293-300.	3.6	20
52	Preparation and property of layer-by-layer alginate hydrogel beads based on multi-phase emulsion technique. Journal of Sol-Gel Science and Technology, 2012, 62, 217-226.	1.1	17
53	Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydrate Polymers, 2017, 169, 341-350.	5.1	15
54	The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 31-37.	0.4	12

#	Article	IF	CITATIONS
55	Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing. Frontiers of Materials Science, 2015, 9, 272-281.	1.1	12
56	Preparation and antithrombotic activity identification of Perinereis aibuhitensis extract: a high temperature and wide pH range stable biological agent. Food and Function, 2017, 8, 3533-3541.	2.1	11
57	A multi-responsive biomimetic nano-complex platform for enhanced gene delivery. Journal of Materials Chemistry B, 2018, 6, 5910-5921.	2.9	11
58	Multilayer calcium alginate beads containing Diatom Biosilica and Bacillus subtilis as microecologics for sewage treatment. Carbohydrate Polymers, 2021, 256, 117603.	5.1	10
59	Adsorption characteristics of residual oil on amphiphilic chitosan derivative. Water Science and Technology, 2010, 61, 2363-2374.	1.2	6
60	<i>In vitro</i> heterogeneous degradation of alginate and its validation of different molecular weight on blood bio-compatibility. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 380-393.	1.9	6
61	Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy. New Journal of Chemistry, 2022, 46, 2140-2154.	1.4	6
62	Sodium carboxymethylation-functionalized chitosan fibers for cutaneous wound healing application. Frontiers of Materials Science, 2016, 10, 358-366.	1.1	5
63	Researches on the Internal Molecular Weight Uniformity of Chitosan Biomaterials. Journal of Ocean University of China, 2020, 19, 459-465.	0.6	0