Jennifer E Bruin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8294912/publications.pdf Version: 2024-02-01

IENNIEED F RDIIIN

#	Article	IF	CITATIONS
1	Persistent organic pollutants and β-cell toxicity: a comprehensive review. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E383-E413.	1.8	25
2	Prolonged Low-Dose Dioxin Exposure Impairs Metabolic Adaptability to High-Fat Diet Feeding in Female but Not Male Mice. Endocrinology, 2021, 162, .	1.4	12
3	Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice. Cell Reports Medicine, 2021, 2, 100434.	3.3	10
4	Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. Frontiers in Toxicology, 2021, 3, 685840.	1.6	4
5	Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia, 2020, 63, 162-178.	2.9	35
6	Female mice exposed to low doses of dioxin during pregnancy and lactation have increased susceptibility to diet-induced obesity and diabetes. Molecular Metabolism, 2020, 42, 101104.	3.0	14
7	Long-term metabolic consequences of acute dioxin exposure differ between male and female mice. Scientific Reports, 2020, 10, 1448.	1.6	23
8	Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. Frontiers in Endocrinology, 2020, 11, 604998.	1.5	2
9	Sex Differences in Maturation of Human Embryonic Stem Cell–Derived β Cells in Mice. Endocrinology, 2018, 159, 1827-1841.	1.4	44
10	Effects of Pregnancy on Transplanted Pancreatic Beta Cell Progenitors Derived from Human Embryonic Stem CellsImage 7. Canadian Journal of Diabetes, 2016, 40, S13-S14.	0.4	0
11	Hypothyroidism Impairs Human Stem Cell–Derived Pancreatic Progenitor Cell Maturation in Mice. Diabetes, 2016, 65, 1297-1309.	0.3	31
12	Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces \hat{I}^2 Cell Proliferation. Cell Metabolism, 2016, 23, 179-193.	7.2	160
13	Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice. Stem Cell Reports, 2015, 5, 1081-1096.	2.3	65
14	Differentiation of human pluripotent stem cells into β-cells: Potential and challenges. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 833-847.	2.2	40
15	Characterization of Antibodies to Products of Proinsulin Processing Using Immunofluorescence Staining of Pancreas in Multiple Species. Journal of Histochemistry and Cytochemistry, 2015, 63, 646-662.	1.3	32
16	Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs. Stem Cell Reports, 2015, 4, 605-620.	2.3	64
17	Replacing and safeguarding pancreatic β cells for diabetes. Science Translational Medicine, 2015, 7, 316ps23.	5.8	39
18	Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Research, 2014, 12, 194-208.	0.3	133

Jennifer E Bruin

#	Article	IF	CITATIONS
19	Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 1121-1133.	9.4	1,253
20	Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia, 2013, 56, 1987-1998.	2.9	177
21	Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells, 2013, 31, 2432-2442.	1.4	233
22	Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes. Diabetologia, 2013, 56, 2213-2221.	2.9	36
23	Leptin Administration Enhances Islet Transplant Performance in Diabetic Mice. Diabetes, 2013, 62, 2738-2746.	0.3	14
24	Impaired Ca2+ Signaling in β-Cells Lacking Leptin Receptors by Cre-loxP Recombination. PLoS ONE, 2013, 8, e71075.	1.1	12
25	Maternal antioxidants prevent β ell apoptosis and promote formation of dual hormoneâ€expressing endocrine cells in male offspring following fetal and neonatal nicotine exposure. Journal of Diabetes, 2012, 4, 297-306.	0.8	16
26	Restoring insulin production for type 1 diabetes. Journal of Diabetes, 2012, 4, 319-331.	0.8	17
27	Differentiation of Human Embryonic Stem Cells into Pancreatic Endocrine Cells. Stem Cells and Cancer Stem Cells, 2012, , 191-206.	0.1	3
28	Maturation of Human Embryonic Stem Cell–Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice. Diabetes, 2012, 61, 2016-2029.	0.3	493
29	Leptin Administration Improves Islet Transplant Efficacy in Streptozotocin-induced Diabetic Mice. Canadian Journal of Diabetes, 2012, 36, S63.	0.4	0
30	Effect of in utero and lactational nicotine exposure on the male reproductive tract in peripubertal and adult rats. Reproductive Toxicology, 2011, 31, 418-423.	1.3	19
31	Rosiglitazone improves pancreatic mitochondrial function in an animal model of dysglycemia: role of the insulin-like growth factor axis. Endocrine, 2010, 37, 303-311.	1.1	6
32	Long-Term Consequences of Fetal and Neonatal Nicotine Exposure: A Critical Review. Toxicological Sciences, 2010, 116, 364-374.	1.4	307
33	Maternal nicotine exposure increases oxidative stress in the offspring. Free Radical Biology and Medicine, 2008, 44, 1919-1925.	1.3	81
34	Increased Pancreatic Beta-Cell Apoptosis following Fetal and Neonatal Exposure to Nicotine Is Mediated via the Mitochondria. Toxicological Sciences, 2008, 103, 362-370.	1.4	65
35	Fetal and Neonatal Nicotine Exposure in Wistar Rats Causes Progressive Pancreatic Mitochondrial Damage and Beta Cell Dysfunction. PLoS ONE, 2008, 3, e3371.	1.1	68
36	Fetal and neonatal nicotine exposure and postnatal glucose homeostasis: identifying critical windows of exposure. Journal of Endocrinology, 2007, 194, 171-178.	1.2	73