Theo Kreouzis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8294793/publications.pdf

Version: 2024-02-01

840776 642732 30 572 11 23 citations h-index g-index papers 30 30 30 885 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials, 2017, 27, 1701973.	14.9	80
2	Efficient, Stable <i>Bulk</i> Charge Transport in Crystalline/Crystalline Semiconductor–Insulator Blends. Advanced Materials, 2009, 21, 4447-4451.	21.0	77
3	Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 3660-3666.	4.6	62
4	Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-hexylthiophene). Macromolecules, 2011, 44, 1221-1225.	4.8	56
5	Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nature Communications, 2019, 10, 1674.	12.8	49
6	Solidâ€State Processing of Organic Semiconductors. Advanced Materials, 2010, 22, 3942-3947.	21.0	46
7	Evolution of Two Types of CdTe Magic-Size Clusters from a Single Induction Period Sample. Journal of Physical Chemistry Letters, 2018, 9, 5288-5295.	4.6	46
8	Comparative Study of Sub-THz FSS Filters Fabricated by Inkjet Printing, Microprecision Material Printing, and Photolithography. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 184-190.	3.1	34
9	One-Step Approach to Single-Ensemble CdS Magic-Size Clusters with Enhanced Production Yields. Journal of Physical Chemistry Letters, 2019, 10, 2725-2732.	4.6	25
10	Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nature Communications, 2020, 11, 4199.	12.8	21
11	Fitting the magnetoresponses of the OLED using polaron pair model to obtain spin-pair dynamics and local hyperfine fields. Scientific Reports, 2020, 10, 16806.	3.3	13
12	Newly synthesised gadolinium bis-phthalocyanine sandwich complex: ambipolar organic semiconductor. Semiconductor Science and Technology, 2018, 33, 095010.	2.0	8
13	The transition from bipolaron to triplet-polaron magnetoresistance in a single layer organic semiconductor device. Organic Electronics, 2014, 15, 1711-1716.	2.6	7
14	Antenna array control via integrated optically-activated organic semiconductor for S-band applications. , 2016, , .		5
15	Modelling and fitting the Polaron Pair Magnetoconductance model to obtain a realistic local hyperfine field in Tris-(8-hydroxyquinoline)aluminium based diodes. Scientific Reports, 2019, 9, 3439.	3.3	5
16	Annealing and doping-dependent magnetoresistance in single layer poly(3-hexyl-thiophene) organic semiconductor device. Organic Electronics, 2015, 17, 51-56.	2.6	4
17	From simulations to measurements: prototyping an antenna for nonâ€linear applications at subâ€₹Hz frequencies. IET Microwaves, Antennas and Propagation, 2017, 11, 304-309.	1.4	4
18	Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle–Polymer Blends. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 37184-37192.	8.0	4

#	Article	IF	Citations
19	Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6399-6408.	4.6	4
20	Experimental Studies on the Dynamic Memcapacitance Modulation of the ReO3@ReS2 Composite Material-Based Diode. Nanomaterials, 2020, 10, 2103.	4.1	4
21	Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38499-38507.	8.0	4
22	Low-cost inkjet-printed FSS band-pass filters for 100 and 300 GHz. , 2016, , .		3
23	Investigation of frequency-tripling performance of Schottky diode based multennas to 0.3 THz., 2016, ,		3
24	Measurements of non-linear sub-THz quasi-optical devices., 2017,,.		3
25	Estimation of dark and active dielectric constants in the sub-THz frequency domain of an optically tunable organic semiconductor blend of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester. Applied Physics Express, 2018, 11, 061601.	2.4	2
26	Solution-Processed Donor–Acceptor Poly(3-hexylthiophene):Phenyl-C ₆₁ -butyric Acid Methyl Ester Diodes for Low-Voltage α Particle Detection. ACS Applied Materials & Detection. AC	8.0	2
27	Impurity effects on charge transport and magnetoconductance in a single layer poly(3-hexyl-thiophene) device. Applied Physics Letters, 2016, 108, 203301.	3.3	1
28	Higher harmonic generation: Coupling two radiating elements at two different frequencies. , 2016, , .		0
29	Heuristic description of separate charge transport pathways determined by Time of Flight: Multiple hole transit times in the ubiquitous poly(3-hexylthiophene). Organic Electronics, 2019, 74, 41-45.	2.6	0
30	Understanding asymmetric magnetoconductance in OLEDs: The effects of gradient magnetic fields. Organic Electronics, 2021, , 106251.	2.6	0