
Dong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8294584/publications.pdf

Version: 2024-02-01

DONG WANG

#	Article	IF	CITATIONS
1	Reversing fatigue in carbon-fiber reinforced vitrimer composites. Carbon, 2022, 187, 108-114.	5.4	20
2	A simple, efficient route to modify the properties of epoxy dynamic polymer networks. Soft Matter, 2022, 18, 382-389.	1.2	4
3	Light emitting CMC-CHO based self-healing hydrogel with injectability for in vivo wound repairing applications. Carbohydrate Polymers, 2022, 281, 119052.	5.1	20
4	Measuring Surface Relaxation of Vitrimers. Macromolecules, 2022, 55, 1260-1266.	2.2	7
5	Catalyst Control of Interfacial Welding Mechanical Properties of Vitrimers. Chinese Journal of Polymer Science (English Edition), 2022, 40, 611-617.	2.0	2
6	Using Nanosphere Embedding to Probe the Surface and Bulk Relaxation in Vitrimers. Langmuir, 2022, 38, 6174-6179.	1.6	1
7	Langmuir–Blodgett Deposition of Cellulose Nanocrystal Surfactants into Ordered Monolayers. Langmuir, 2022, 38, 8495-8501.	1.6	1
8	Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. Chinese Journal of Polymer Science (English Edition), 2021, 39, 651-658.	2.0	4
9	Interfacial Reaction Induced Disruption and Dissolution of Dynamic Polymer Networks. Macromolecular Rapid Communications, 2021, 42, 2100023.	2.0	5
10	Unexpected Improvement of Both Mechanical Strength and Elasticity of EPDM/PP Thermoplastic Vulcanizates by Introducing Î ² -Nucleating Agents. Macromolecules, 2021, 54, 2835-2843.	2.2	14
11	Poly(aspartic acid) based self-healing hydrogels with antibacterial and light-emitting properties for wound repair. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111568.	2.5	18
12	Rubber-reinforced rubbers toward the combination of high reinforcement and low energy loss. Nano Energy, 2021, 83, 105822.	8.2	24
13	Biobased Dynamic Polymer Networks with Rapid Stress Relaxation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11091-11099.	3.2	39
14	Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomaterialia, 2021, 131, 149-161.	4.1	51
15	Catalyst Control of Nanoscale Characteristic Length of the Glass Transition in Organic Strong Glass-Formers. ACS Macro Letters, 2021, 10, 1597-1601.	2.3	1
16	Fully Biobased Elastomer Composites with Mechanically Robust, Reprocessable, and Biocompatible Properties. ACS Applied Polymer Materials, 2021, 3, 6446-6454.	2.0	9
17	Stabilizing Aqueous Three-Dimensional Printed Constructs Using Chitosan-Cellulose Nanocrystal Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 55426-55433.	4.0	11
18	Self-Assembly Behavior of PS- <i>b</i> -P2VP Block Copolymers and Carbon Quantum Dots at Water/Oil Interfaces. Macromolecules, 2020, 53, 10981-10987.	2.2	13

Dong Wang

#	Article	IF	CITATIONS
19	Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. Giant, 2020, 4, 100035.	2.5	35
20	Understanding the Morphology of High-Performance Solar Cells Based on a Low-Cost Polymer Donor. ACS Applied Materials & Interfaces, 2020, 12, 9537-9544.	4.0	17
21	Size-Dependent Interfacial Assembly of Graphene Oxide at Water–Oil Interfaces. Journal of Physical Chemistry B, 2020, 124, 4835-4842.	1.2	14
22	Poly(oxime–ester) Vitrimers with Catalyst-Free Bond Exchange. Journal of the American Chemical Society, 2019, 141, 13753-13757.	6.6	149
23	Reconfigurable ferromagnetic liquid droplets. Science, 2019, 365, 264-267.	6.0	278
24	Probing the structural evolution in deformed isoprene rubber by in situ synchrotron X-ray diffraction and atomic force microscopy. Polymer, 2019, 185, 121926.	1.8	13
25	Configurationally Constrained Crystallization of Brush Polymers with Poly(ethylene oxide) Side Chains. Macromolecules, 2019, 52, 592-600.	2.2	19
26	Nanorod–Surfactant Assemblies and Their Interfacial Behavior at Liquid–Liquid Interfaces. ACS Macro Letters, 2019, 8, 512-518.	2.3	21
27	Interfacial Broadening Kinetics between a Network and a Linear Polymer and Their Composites Prepared by Melt Blending. Macromolecules, 2019, 52, 9759-9765.	2.2	15
28	Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules, 2018, 51, 3-24.	2.2	129
29	Light-Triggered Reversible Self-Engulfing of Janus Nanoparticles. ACS Macro Letters, 2018, 7, 1475-1479.	2.3	38
30	AFM nanomechanical mapping and nanothermal analysis reveal enhanced crystallization at the surface of a semicrystalline polymer. Polymer, 2018, 146, 188-195.	1.8	22
31	Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 6793-6796.	6.6	50
32	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angewandte Chemie - International Edition, 2017, 56, 12594-12598.	7.2	72
33	Nanomechanical Imaging of the Diffusion of Fullerene into Conjugated Polymer. ACS Nano, 2017, 11, 8660-8667.	7.3	24
34	Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. Angewandte Chemie, 2017, 129, 12768-12772.	1.6	50
35	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. ACS Applied Materials & Interfaces, 2017, 9, 24451-24455.	4.0	1
36	Homogenizing Blends of Cross-linked Polymers by Interfacial Exchange Reactions. ACS Applied Materials & Interfaces, 0, , .	4.0	7