
Jonas O Wolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8294556/publications.pdf

Version: 2024-02-01

LONAS O WOLFE

#	Article	IF	CITATIONS
1	Nutritionally induced nanoscale variations in spider silk structural and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104873.	1.5	8
2	Cerotegument microstructure of whip spiders (Amblypygi: Euamblypygi Weygoldt, 1996) reveals characters for systematics from family to species level. Journal of Morphology, 2022, 283, 428-445.	0.6	4
3	AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size. Scientific Data, 2022, 9, .	2.4	15
4	Evolutionary kinematics of spinneret movements for rapid silk thread anchorage in spiders. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 141-152.	0.7	8
5	Robust substrate anchorages of silk lines with extensible nano-fibres. Soft Matter, 2021, 17, 7903-7913.	1.2	1
6	The World Spider Trait database: a centralized global open repository for curated data on spider traits. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	30
7	Evolution of Silk Anchor Structure as the Joint Effect of Spinning Behavior and Spinneret Morphology. Integrative and Comparative Biology, 2021, 61, 1411-1431.	0.9	6
8	Locomotion and kinematics of arachnids. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 99-103.	0.7	4
9	Adhesive Droplets of Glowworm Snares (Keroplatidae: Arachnocampa spp.) Are a Complex Mix of Organic Compounds. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	5
10	Fine structure of the epicuticular secretion coat and associated glands of Pedipalpi and Palpigradi (Arachnida). Journal of Morphology, 2021, 282, 1158-1169.	0.6	3
11	Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
12	A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data, 2020, 7, 6.	2.4	28
13	Limits of piriform silk adhesion—similar effects of substrate surface polarity on silk anchor performance in two spider species with disparate microhabitat use. Die Naturwissenschaften, 2020, 107, 31.	0.6	6
14	Strong and Tough Silk for Resilient Attachment Discs: The Mechanical Properties of Piriform Silk in the Spider Cupiennius salei (Keyserling, 1877). Frontiers in Materials, 2020, 7, .	1.2	19
15	The Evolution of Dragline Initiation in Spiders: Multiple Transitions from Multi- to Single-Gland Usage. Diversity, 2020, 12, 4.	0.7	5
16	Towards establishment of a centralized spider traits database. Journal of Arachnology, 2020, 48, .	0.3	18
17	Traction reinforcement in prehensile feet of harvestmen (Arachnida, Opiliones). Journal of Experimental Biology, 2019, 222, .	0.8	1
18	Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages. Evolution; International Journal of Organic Evolution, 2019, 73, 2122-2134.	1.1	25

#	Article	IF	CITATIONS
19	Amblypygid-fungal interactions: The whip spider exoskeleton as a substrate for fungal growth. Fungal Biology, 2019, 123, 497-506.	1.1	8

20 Zooplanktersâ \in ^M nightmare: The fast and efficient catching basket of larval phantom midges (Diptera:) Tj ETQq0 0.0 rgBT /Overlock 10

21	Ultrastructure of spider thread anchorages. Journal of Morphology, 2019, 280, 534-543.	0.6	14
22	Strike kinematics in the whip spider Charon sp. (Amblypygi: Charontidae). Journal of Arachnology, 2019, 47, 260.	0.3	9
23	Adhesion and friction in hunting spiders: The effect of contact splitting on their attachment ability. Zoologischer Anzeiger, 2018, 273, 231-239.	0.4	11
24	Plastic material investment in load-bearing silk attachments in spiders. Zoology, 2018, 131, 45-47.	0.6	7
25	Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations. Journal of the Royal Society Interface, 2017, 14, 20160783.	1.5	30
26	Stygophrynus orientalis sp. nov. (Amblypygi: Charontidae) from Indonesia with the description of a remarkable spermatophore. Zootaxa, 2017, 4232, zootaxa.4232.3.8.	0.2	8
27	Strength of silk attachment to llex chinensis leaves in the tea bagworm Eumeta minuscula (Lepidoptera, Psychidae). Journal of the Royal Society Interface, 2017, 14, 20170007.	1.5	7
28	Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). Journal of Experimental Biology, 2017, 220, 2250-2259.	0.8	32
29	Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	17
30	Clarity of objectives and working principles enhances the success of biomimetic programs. Bioinspiration and Biomimetics, 2017, 12, 051001.	1.5	35
31	Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171124.	1.2	14
32	Impact of Ambient Humidity on Traction Forces in Ladybird Beetles (Coccinella septempunctata). Biologically-inspired Systems, 2017, , 21-32.	0.4	2
33	Effect of Substrate Stiffness on the Attachment Ability in Ladybird Beetles Coccinella septempunctata. Biologically-inspired Systems, 2017, , 47-61.	0.4	4
34	Structural Effects of Glue Application in Spiders—What Can We Learn from Silk Anchors?. Biologically-inspired Systems, 2017, , 63-80.	0.4	7
35	Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures. Journal of Theoretical Biology, 2017, 430, 1-8.	0.8	16
36	The water-repellent cerotegument of whip-spiders (Arachnida: Amblypygi). Arthropod Structure and Development, 2017, 46, 116-129.	0.8	17

#	Article	IF	CITATIONS
37	Influence of ambient humidity on the attachment ability of ladybird beetles (<i>Coccinella) Tj ETQq1 1 0.784314</i>	rgBT /Ove	erlock 10 Tf 5
38	The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida,) Tj ETQq0 0 0 rgB1	[/Qverlock	R 10 Tf 50 70
39	Whip spiders (Amblypygi) become water-repellent by a colloidal secretion that self-assembles into hierarchical microstructures. Zoological Letters, 2016, 2, 23.	0.7	16
40	Adhesive Secretions. Biologically-inspired Systems, 2016, , 117-140.	0.4	3
41	Comparative Contact Mechanics. Biologically-inspired Systems, 2016, , 153-162.	0.4	0
42	Biomimetics: What Can We Learn From Arachnids?. Biologically-inspired Systems, 2016, , 163-172.	0.4	0
43	Mechanical Attachment Devices. Biologically-inspired Systems, 2016, , 25-52.	0.4	1
44	Tape- and Spatula-Shaped Microstructures. Biologically-inspired Systems, 2016, , 53-70.	0.4	2
45	Nano-fibres. Biologically-inspired Systems, 2016, , 71-78.	0.4	0
46	Soft Adhesive Pads. Biologically-inspired Systems, 2016, , 95-116.	0.4	1
47	Biological Functions and Evolutionary Aspects. Biologically-inspired Systems, 2016, , 141-151.	0.4	0
48	Evolution of hyperflexible joints in sticky prey capture appendages of harvestmen (Arachnida,) Tj ETQq0 0 0 rgBT	Overlock	19 Tf 50 30
49	Adhesive Secretions in Harvestmen (Arachnida: Opiliones). , 2016, , 281-301.		7
50	Hunting Without a Web: How Lycosoid Spiders Subdue their Prey. Ethology, 2015, 121, 1166-1177.	0.5	29
51	A new species of the South East Asian genus Sarax Simon, 1892 (Arachnida: Amblypygi: Charinidae) and synonymization of Sarax mediterraneus Delle Cave, 1986. Zootaxa, 2015, 4012, 542-52.	0.2	13

52	Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders. Zoology, 2015, 118, 1-7.	0.6	16
53	Spider's super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter, 2015, 11, 2394-2403.	1.2	71

54Adhesive pad differentiation in <i>Drosophila melanogaster</i>64ci>Su(z)2</i>650.85

JONAS O WOLFF

#	Article	IF	CITATIONS
55	How to stay on mummy's back: Morphological and functional changes of the pretarsus in arachnid postembryonic stages. Arthropod Structure and Development, 2015, 44, 301-312.	0.8	21
56	Functional anatomy of the pretarsus in whip spiders (Arachnida, Amblypygi). Arthropod Structure and Development, 2015, 44, 524-540.	0.8	19
57	Description of <i>Sarax buxtoni</i> (Gravely 1915) (Arachnida: Amblypygi: Charinidae) and a new case of parthenogenesis in Amblypygi from Singapore. Journal of Arachnology, 2014, 42, 233-239.	0.3	14
58	Gluing the â€~unwettable': soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. Journal of Experimental Biology, 2014, 217, 3535-3544.	0.8	29
59	The whole is more than the sum of all its parts: collective effect of spider attachment organs. Journal of Experimental Biology, 2014, 217, 222-224.	0.8	38
60	Composition and substrate-dependent strength of the silken attachment discs in spiders. Journal of the Royal Society Interface, 2014, 11, 20140477.	1.5	35
61	How to Pass the Cap – Functional Morphology and Biomechanics of Spider Bridging Threads. Biologically-inspired Systems, 2014, , 165-177.	0.4	11
62	Radial arrangement of Janus-like setae permits friction control in spiders. Scientific Reports, 2013, 3, 1101.	1.6	44
63	The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders. PLoS ONE, 2013, 8, e62682.	1.1	46
64	The influence of humidity on the attachment ability of the spider <i>Philodromus dispar</i> (Araneae,) Tj ETQq0 0	0 [gBT /O	verlock 10 Tf
65	Surface roughness effects on attachment ability of the spider <i>Philodromus dispar</i> (Araneae,) Tj ETQq1 1 0	.784314 r 0.8	gBT ₇₄ /Overloci
66	Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Structure and Development, 2012, 41, 419-433.	0.8	28

67	The evolution and function of spider feet (Araneae: Arachnida): multiple acquisitions of distal articulations. Zoological Journal of the Linnean Society, 0, , .	1.0	6
----	--	-----	---