Chunyang Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829442/publications.pdf

Version: 2024-02-01

759233 794594 33 429 12 19 citations h-index g-index papers 37 37 37 561 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	FL118, a novel camptothecin derivative, is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance. Molecular Cancer, 2015, 14, 92.	19.2	50
2	Copper-Catalyzed Cyclization of Steroidal Acylaminoacetylenes: Syntheses of Novel 11β-Aryl-17,17-spiro[(4â€~H,5â€~-methylene)oxazol]-Substituted Steroids. Organic Letters, 2007, 9, 1887-1890.	4.6	42
3	Design, Synthesis, and Estrogenic Activity of a Novel Estrogen Receptor ModulatorA Hybrid Structure of 17l²-Estradiol and Vitamin E in Hippocampal Neurons. Journal of Medicinal Chemistry, 2007, 50, 4471-4481.	6.4	41
4	Synthesis, Pharmacological Characterization, and Structure–Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor. ACS Chemical Neuroscience, 2014, 5, 576-587.	3 . 5	41
5	Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake. Journal of Medicinal Chemistry, 2018, 61, 6748-6758.	6.4	28
6	Effect of Substitution on the Aniline Moiety of the GPR88 Agonist 2-PCCA: Synthesis, Structure–Activity Relationships, and Molecular Modeling Studies. ACS Chemical Neuroscience, 2016, 7, 1418-1432.	3.5	20
7	Evaluation of Amide Bioisosteres Leading to 1,2,3-Triazole Containing Compounds as GPR88 Agonists: Design, Synthesis, and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2021, 64, 12397-12413.	6.4	19
8	Synthesis of N6-[endo-2′-(endo-5′-Hydroxy)norbornyl]-8-(N-methylisopropylamino)-9-methyladenine (WRC-0571): A Potent and Selective Adenosine A1 Receptor Antagonist. Synthesis, 2007, 2007, 219-224.	2.3	15
9	Synthesis and identification of novel 11β-aryl-4′,5′-dihydrospiro[estra-4,9-diene-17β,4′-oxazole] analogs with dissociated antiprogesterone activities. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5754-5757.	2.2	14
10	The GPR88 receptor agonist 2-PCCA does not alter the behavioral effects of methamphetamine in rats. European Journal of Pharmacology, 2013, 698, 272-277.	3.5	14
11	Topoisomerase I (Top1): a major target of FL118 for its antitumor efficacy or mainly involved in its side effects of hematopoietic toxicity?. American Journal of Cancer Research, 2017, 7, 370-382.	1.4	14
12	Development and validation of a high-throughput calcium mobilization assay for the orphan receptor GPR88. Journal of Biomedical Science, 2017, 24, 23.	7.0	13
13	Discovery of <i>N</i> -{4-[(3-Hydroxyphenyl)-3-methylpiperazin-1-yl]methyl-2-methylpropyl}-4-phenoxybenzamide Analogues as Selective Kappa Opioid Receptor Antagonists. Journal of Medicinal Chemistry, 2013, 56, 4551-4567.	6.4	12
14	Design, synthesis and pharmacological evaluation of 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives as GPR88 agonists. Bioorganic and Medicinal Chemistry, 2017, 25, 805-812.	3.0	12
15	Chemical synthesis and structural elucidation of a new serotonin metabolite: (4R)-2-[(5′-hydroxy-1′H-indol-3′-yl)methyl]thiazolidine-4-carboxylic acid. Tetrahedron Letters, 2006, 47, 943-946.	1.4	11
16	Synthesis and antihormonal properties of novel $11\hat{l}^2$ -benzoxazole-substituted steroids. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1705-1708.	2.2	11
17	Development of 3-Phenyltropane Analogues with High Affinity for the Dopamine and Serotonin Transporters and Low Affinity for the Norepinephrine Transporter. Journal of Medicinal Chemistry, 2008, 51, 8048-8056.	6.4	9
18	Design, Synthesis, and Structure–Activity Relationship Studies of (4-Alkoxyphenyl)glycinamides and Bioisosteric 1,3,4-Oxadiazoles as GPR88 Agonists. Journal of Medicinal Chemistry, 2020, 63, 14989-15012.	6.4	9

#	Article	IF	CITATIONS
19	Pyrazole Agonist of the Apelin Receptor Improves Symptoms of Metabolic Syndrome in Mice. Journal of Medicinal Chemistry, 2021, 64, 3006-3025.	6.4	7
20	Synthesis and receptor binding properties of $2\hat{l}^2$ -alkynyl and $2\hat{l}^2$ -(1,2,3-triazol)substituted $3\hat{l}^2$ -(substituted) Tj ETQ	q <u>9.8</u> 0 rgB	T ₆ /Overlock
21	Synthesis and monoamine transporter binding properties of $2\hat{l}^2$ -[$3\hat{a}$ e²-(substituted benzyl)isoxazol-5-yl]- and $2\hat{l}^2$ -[$3\hat{a}$ e²-methyl- $4\hat{a}$ e²-(substituted phenyl)isoxazol-5-yl]- $3\hat{l}^2$ -(substituted phenyl)tropanes. Bioorganic and Medicinal Chemistry, 2008, 16, 6682-6688.	3.0	6
22	Practical Synthesis of <i>p</i> â€Aminophenethylspiperone (NAPS), a Highâ€Affinity, Selective D ₂ â€Dopamine Receptor Antagonist. Synthetic Communications, 2008, 38, 816-823.	2.1	6
23	Reversal of Ethanol-induced Intoxication by a Novel Modulator of $G\hat{I}^2\hat{I}^3$ Protein Potentiation of the Glycine Receptor. Journal of Biological Chemistry, 2016, 291, 18791-18798.	3.4	6
24	Convenient Synthesis of Tolcapone, a Selective Catecholâ€Oâ€methyltransferase Inhibitor. Synthetic Communications, 2008, 38, 810-815.	2.1	5
25	Synthesis and structure–activity relationship of 3β-(4-alkylthio, -methylsulfinyl, and) Tj ETQq1 1 0.784314 rgBT transporters. Bioorganic and Medicinal Chemistry, 2009, 17, 5126-5132.	/Overlock 3.0	10 Tf 50 50 5
26	Improved Syntheses of Nâ€Desmethylcitalopram and N,Nâ€Didesmethylcitalopram. Synthetic Communications, 2007, 37, 901-908.	2.1	4
27	Indole-Containing Amidinohydrazones as Nonpeptide, Dual RXFP3/4 Agonists: Synthesis, Structure–Activity Relationship, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2021, 64, 17866-17886.	6.4	4
28	Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. Journal of Medicinal Chemistry, 2022, , .	6.4	3
29	Synthesis of Carnosine-d ₇ and Anserine-d ₄ for Use as Internal Standards in Liquid Chromatography–Mass Spectrometry. Synthetic Communications, 2009, 39, 3973-3981.	2.1	2
30	A Short and Efficient Synthesis of 3-{2-[2-(Bromomethyl)thiazol-4-yl]-ethynyl}-5-fluorobenzonitrile: A Precursor for PET Radioligand [18F]SP203. Synthesis, 2009, 2009, 1979-1982.	2.3	0
31	Stereospecific Inhibition of Ethanol Potentiation on Glycine Receptor by M554 Stereoisomers. Journal of Chemical Information and Modeling, 2020, 60, 6634-6641.	5.4	0
32	Abstract 1627: The novel camptothecin analog and antiapoptotic protein inhibitor FL118 appears to be a great backbone platform for development of personalized anticancer drugs., 2014,,.		0
33	Analyzing ring moiety additions to the A-ring of camptothecin Journal of Clinical Oncology, 2015, 33, e13529-e13529.	1.6	0