Shurong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 2017, 62, 33-86.	15.8	1,748
2	Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis, 2011, 91, 183-189.	2.6	367
3	Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances, 2009, 27, 562-567.	6.0	346
4	A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, 2020, 312, 123614.	4.8	319
5	Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technology, 2015, 182, 120-127.	4.8	299
6	Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy, 2004, 26, 455-462.	2.9	293
7	Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresource Technology, 2012, 104, 722-728.	4.8	264
8	A Review of Recent Advances in Biomass Pyrolysis. Energy & Fuels, 2020, 34, 15557-15578.	2.5	256
9	Separation of bio-oil by molecular distillation. Fuel Processing Technology, 2009, 90, 738-745.	3.7	240
10	Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2014, 108, 78-85.	2.6	168
11	Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy, 2017, 120, 864-871.	4.5	165
12	Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior. Energy & Fuels, 2015, 29, 5865-5874.	2.5	163
13	A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable and Sustainable Energy Reviews, 2021, 139, 110706.	8.2	162
14	Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel, 2015, 150, 243-251.	3.4	159
15	Overview of Computational Fluid Dynamics Simulation of Reactor-Scale Biomass Pyrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 2783-2798.	3.2	152
16	Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology, 2013, 143, 378-383.	4.8	149
17	CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2. Science of the Total Environment, 2018, 625, 686-695.	3.9	142
18	Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresource Technology, 2016, 218, 1106-1114.	4.8	139

#	Article	IF	CITATIONS
19	Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. Journal of Analytical and Applied Pyrolysis, 2018, 134, 12-24.	2.6	138
20	Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. Journal of Analytical and Applied Pyrolysis, 2017, 127, 350-359.	2.6	128
21	Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresource Technology, 2015, 190, 211-218.	4.8	117
22	In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 2019, 140, 195-204.	2.6	117
23	Separation characteristics of biomass pyrolysis oil in molecular distillation. Separation and Purification Technology, 2010, 76, 52-57.	3.9	113
24	Improved Fischer–Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel, 2013, 108, 597-603.	3.4	112
25	Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst. International Journal of Hydrogen Energy, 2014, 39, 2018-2025.	3.8	105
26	Bio-oil catalytic reforming without steam addition: Application to hydrogen production and studies on its mechanism. International Journal of Hydrogen Energy, 2013, 38, 16038-16047.	3.8	94
27	Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone. International Journal of Hydrogen Energy, 2014, 39, 18675-18687.	3.8	94
28	Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy. Frontiers of Energy and Power Engineering in China, 2007, 1, 413-419.	0.4	93
29	Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. Journal of Materials Chemistry A, 2021, 9, 18614-18622.	5.2	93
30	Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass and Bioenergy, 2012, 45, 138-143.	2.9	92
31	Nitrogen-Doped Hierarchical Porous Biochar Derived from Corn Stalks for Phenol-Enhanced Adsorption. Energy & Fuels, 2019, 33, 12459-12468.	2.5	90
32	Engineering Solid Electrolyte Interface at Nanoâ€5cale for Highâ€Performance Hard Carbon in Sodiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2100278.	7.8	90
33	A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy, 2021, 216, 119227.	4.5	89
34	Methyl Acetate Synthesis from Dimethyl Ether Carbonylation over Mordenite Modified by Cation Exchange. Journal of Physical Chemistry C, 2015, 119, 524-533.	1.5	88
35	A model of wood flash pyrolysis in fluidized bed reactor. Renewable Energy, 2005, 30, 377-392.	4.3	86
36	Properties of Bio-oil from Fast Pyrolysis of Rice Husk. Chinese Journal of Chemical Engineering, 2011, 19, 116-121.	1.7	86

#	Article	IF	CITATIONS
37	Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Processing Technology, 2018, 181, 142-156.	3.7	83
38	Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5. Fuel Processing Technology, 2018, 179, 319-323.	3.7	83
39	Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel, 2016, 185, 763-771.	3.4	82
40	A comparative study of machine learning methods for bio-oil yield prediction – A genetic algorithm-based features selection. Bioresource Technology, 2021, 335, 125292.	4.8	82
41	Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: Effects of pyrolysis conditions and biomass characteristics. Bioresource Technology, 2021, 339, 125581.	4.8	81
42	Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid products. Biomass and Bioenergy, 2019, 128, 105300.	2.9	80
43	Biogasoline Production from the Co-cracking of the Distilled Fraction of Bio-oil and Ethanol. Energy & Fuels, 2014, 28, 115-122.	2.5	74
44	A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue. Chinese Journal of Chemical Engineering, 2020, 28, 2872-2880.	1.7	73
45	Enhancement of CO ₂ Methanation over La-Modified Ni/SBA-15 Catalysts Prepared by Different Doping Methods. ACS Sustainable Chemistry and Engineering, 2019, 7, 14647-14660.	3.2	69
46	Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science and Engineering, 2015, 3, 126-134.	1.9	68
47	Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone. Green Chemistry, 2017, 19, 3869-3879.	4.6	68
48	Experimental research on acetic acid steam reforming over Co–Fe catalysts and subsequent density functional theory studies. International Journal of Hydrogen Energy, 2012, 37, 11122-11131.	3.8	67
49	Mechanism study on the pyrolysis of a synthetic β-O-4 dimer as lignin model compound. Proceedings of the Combustion Institute, 2017, 36, 2225-2233.	2.4	67
50	Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts. International Journal of Hydrogen Energy, 2015, 40, 11406-11413.	3.8	66
51	Nitrogen and Sulfur Co-doped Hierarchical Porous Biochar Derived from the Pyrolysis of Mantis Shrimp Shell for Supercapacitor Electrodes. Energy & Fuels, 2021, 35, 1557-1566.	2.5	66
52	Conversion of carbohydrates into 5â€hydroxymethylfurfural in a green reaction system of CO ₂ â€waterâ€isopropanol. AICHE Journal, 2017, 63, 257-265.	1.8	63
53	Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin. Energy & Fuels, 2018, 32, 4160-4166.	2.5	62
54	Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation. Journal of CO2 Utilization, 2019, 34, 733-741.	3.3	62

#	Article	IF	CITATIONS
55	Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation. Combustion and Flame, 2019, 208, 273-280.	2.8	60
56	A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts. Korean Journal of Chemical Engineering, 2007, 24, 336-340.	1.2	59
57	Structural Characterization and Pyrolysis Behavior of Cellulose and Hemicellulose Isolated from Softwood <i>Pinus armandii</i> Franch. Energy & Fuels, 2016, 30, 5721-5728.	2.5	59
58	Methanation of bio-syngas over a biochar supported catalyst. New Journal of Chemistry, 2014, 38, 4471.	1.4	58
59	Co-cracking of bio-oil model compound mixtures and ethanol over different metal oxide-modified HZSM-5 catalysts. Fuel, 2015, 160, 534-543.	3.4	58
60	Structural characterization and pyrolysis behavior of humin by-products from the acid-catalyzed conversion of C6 and C5 carbohydrates. Journal of Analytical and Applied Pyrolysis, 2016, 118, 259-266.	2.6	57
61	Highly Selective Hydrodeoxygenation of Lignin to Naphthenes over Three-Dimensional Flower-like Ni ₂ P Derived from Hydrotalcite. ACS Catalysis, 2022, 12, 1338-1356.	5.5	57
62	Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production. New Journal of Chemistry, 2014, 38, 2792.	1.4	49
63	Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts. International Journal of Hydrogen Energy, 2018, 43, 18160-18168.	3.8	49
64	N-doping of biomass by ammonia (NH3) torrefaction pretreatment for the production of renewable N-containing chemicals by fast pyrolysis. Bioresource Technology, 2019, 292, 122034.	4.8	49
65	Conversion of C5 Carbohydrates into Furfural Catalyzed by SO ₃ H-Functionalized Ionic Liquid in Renewable γ-Valerolactone. Energy & Fuels, 2017, 31, 3929-3934.	2.5	48
66	Mechanism study on the pyrolysis of the typical ether linkages in biomass. Fuel, 2019, 249, 146-153.	3.4	48
67	Conversion of Glucose into 5-Hydroxymethylfurfural and Levulinic Acid Catalyzed by SO ₄ ^{2–} /ZrO ₂ in a Biphasic Solvent System. Energy & Fuels, 2020, 34, 11041-11049.	2.5	48
68	Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105072.	2.6	48
69	DFT study of bio-oil decomposition mechanism on a Co stepped surface: Acetic acid as a model compound. International Journal of Hydrogen Energy, 2015, 40, 330-339.	3.8	47
70	Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts. Applied Energy, 2020, 275, 115154.	5.1	47
71	The effect of mild hydrogenation on the catalytic cracking of bio-oil for aromatic hydrocarbon production. International Journal of Hydrogen Energy, 2016, 41, 16385-16393.	3.8	44
72	Conversion of carbohydrates into 5-hydroxymethylfurfural in an advanced single-phase reaction system consisting of water and 1,2-dimethoxyethane. RSC Advances, 2015, 5, 84014-84021.	1.7	42

#	Article	IF	CITATIONS
73	Effect of La 2 O 3 replacement on γ-Al 2 O 3 supported nickel catalysts for acetic acid steam reforming. International Journal of Hydrogen Energy, 2017, 42, 20540-20548.	3.8	40
74	Influence of a Lewis acid and a BrÃ,nsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane. RSC Advances, 2018, 8, 7235-7242.	1.7	40
75	A comparative research on the catalytic activity of La2O3 and γ-Al2O3 supported catalysts for acetic acid steam reforming. International Journal of Hydrogen Energy, 2017, 42, 3667-3675.	3.8	38
76	Upgrading of the Acid-Rich Fraction of Bio-oil by Catalytic Hydrogenation-Esterification. ACS Sustainable Chemistry and Engineering, 2017, 5, 1073-1081.	3.2	37
77	Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production. Renewable and Sustainable Energy Reviews, 2022, 154, 111831.	8.2	36
78	Catalysis Mechanism Study of Potassium Salts on Cellulose Pyrolysis by Using TGA-FTIR Analysis. Journal of Chemical Engineering of Japan, 2008, 41, 1133-1142.	0.3	34
79	Influence mechanism of torrefaction on softwood pyrolysis based on structural analysis and kinetic modeling. International Journal of Hydrogen Energy, 2016, 41, 16428-16435.	3.8	34
80	Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition. Journal of Analytical and Applied Pyrolysis, 2018, 134, 439-445.	2.6	32
81	Improved catalytic upgrading of simulated bio-oil via mild hydrogenation over bimetallic catalysts. Fuel Processing Technology, 2018, 179, 135-142.	3.7	31
82	Pyrolysis of wood species based on the compositional analysis. Korean Journal of Chemical Engineering, 2009, 26, 548-553.	1.2	30
83	Pyrolysis of Biomass. , 2016, , .		30
84	Study on Catalytic Pyrolysis of Manchurian Ash for Production of Bio-Oil. International Journal of Green Energy, 2010, 7, 300-309.	2.1	29
85	Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustainable Energy and Fuels, 2019, 3, 3208-3218.	2.5	28
86	Comparative Study on the Dehydration of Biomass-Derived Disaccharides and Polysaccharides to 5-Hydroxymethylfurfural. Energy & Fuels, 2019, 33, 9985-9995.	2.5	27
87	Mechanism study of hemicellulose pyrolysis by combining in-situ DRIFT, TGA-PIMS and theoretical calculation. Proceedings of the Combustion Institute, 2021, 38, 4241-4249.	2.4	27
88	A new insight into pyrolysis mechanism of three typical actual biomass: The influence of structural differences on pyrolysis process. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105184.	2.6	27
89	Influence of Ni Promotion on Liquid Hydrocarbon Fuel Production over Co/CNT Catalysts. Energy & & & & & & & & & & & & & & & & & & &	2.5	26
90	Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: Acetic acid decomposition. International Journal of Hydrogen Energy, 2018, 43, 13212-13224.	3.8	26

#	Article	IF	CITATIONS
91	Effects of Preparation Method on the Performance of Ni/Al2O3 Catalysts for Hydrogen Production by Bio-Oil Steam Reforming. Applied Biochemistry and Biotechnology, 2012, 168, 10-20.	1.4	25
92	Dehydration of xylose to furfural in butanone catalyzed by BrÃ,nsted‣ewis acidic ionic liquids. Energy Science and Engineering, 2019, 7, 2237-2246.	1.9	25
93	Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes. Chemical Research in Chinese Universities, 2014, 30, 848-854.	1.3	24
94	Experimental study and life cycle assessment of CO2 methanation over biochar supported catalysts. Applied Energy, 2020, 280, 115919.	5.1	24
95	Stepwise Enrichment of Sugars from the Heavy Fraction of Bio-oil. Energy & Fuels, 2016, 30, 2233-2239.	2.5	23
96	Conversion of Xylose to Furfural Catalyzed by Carbon-Based Solid Acid Prepared from Pectin. Energy & Fuels, 2021, 35, 9961-9969.	2.5	23
97	Green Conversion of Microalgae into Highâ€Performance Spongeâ€Like Nitrogenâ€Enriched Carbon. ChemElectroChem, 2019, 6, 646-652.	1.7	22
98	Sodium alginate–silica composite aerogels from rice husk ash for efficient absorption of organic pollutants. Biomass and Bioenergy, 2022, 159, 106424.	2.9	22
99	Steam gasification of land, coastal zone and marine biomass by thermal gravimetric analyzer and a free-fall tubular gasifier: Biochars reactivity and hydrogen-rich syngas production. Bioresource Technology, 2019, 289, 121495.	4.8	20
100	Selective hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over highly stable NiAl2O4 spinel-supported bifunctional catalysts. Chemical Engineering Journal, 2022, 429, 132181.	6.6	20
101	Explosion characteristics of a pyrolysis biofuel derived from rice husk. Journal of Hazardous Materials, 2019, 369, 324-333.	6.5	19
102	Reaction kinetics, mechanism, and product analysis of the iron catalytic graphitization of cellulose. Journal of Cleaner Production, 2021, 329, 129735.	4.6	19
103	Hydrodeoxygenation of Ligninâ€Đerived Monomers and Dimers over a Ru Supported Solid Super Acid Catalyst for Cycloalkane Production. Advanced Sustainable Systems, 2020, 4, 1900136.	2.7	18
104	Study on ZSM-5 catalytic pyrolysis mechanism of cellulose based on the Py-GC/MS and the density functional theory. Combustion and Flame, 2022, 241, 112131.	2.8	18
105	More than a support: the unique role of Nb ₂ O ₅ in supported metal catalysts for lignin hydrodeoxygenation. Catalysis Science and Technology, 2022, 12, 3751-3766.	2.1	18
106	Catalytic methanation of syngas over Ni-based catalysts with different supports. Chinese Journal of Chemical Engineering, 2017, 25, 602-608.	1.7	17
107	A novel approach for preparing nitrogen-doped porous nanocomposites for supercapacitors. Fuel, 2021, 304, 121449.	3.4	17
108	Experimental and Kinetic Study of Arabinose Conversion to Furfural in Renewable Butanone–Water Solvent Mixture Catalyzed by Lewis Acidic Ionic Liquid Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 17088-17097.	1.8	16

#	Article	IF	CITATIONS
109	Influence of inlet gas composition on dimethyl ether carbonylation and the subsequent hydrogenation of methyl acetate in two-stage ethanol synthesis. New Journal of Chemistry, 2016, 40, 6460-6466.	1.4	15
110	Dual -functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis. Green Chemistry, 2021, 23, 8458-8467.	4.6	15
111	Critical Review on the Preparation of Platform Compounds from Biomass or Saccharides via Hydrothermal Conversion over Carbon-Based Solid Acid Catalysts. Energy & Fuels, 2021, 35, 14462-14483.	2.5	15
112	Enhancement of furfural formation from C5 carbohydrates by NaCl in a green reaction system of CO ₂ –water–isopropanol. Energy Science and Engineering, 2017, 5, 208-216.	1.9	13
113	Life cycle analysis of greenhouse gas emissions of China's power generation on spatial and temporal scale. Energy Science and Engineering, 2022, 10, 1083-1095.	1.9	13
114	Experimental study of the influence of acid wash on cellulose pyrolysis. Frontiers of Chemical Engineering in China, 2007, 1, 35-39.	0.6	12
115	Density Functional Theory and Microkinetic Studies of Bio-oil Decomposition on a Cobalt Surface: Formic Acid as a Model Compound. Energy & Fuels, 2017, 31, 1866-1873.	2.5	12
116	Bio-MCM-41: a high-performance catalyst support derived from pyrolytic biochar. New Journal of Chemistry, 2018, 42, 12394-12402.	1.4	12
117	Selective Fischer-Tropsch synthesis for gasoline production over Y, Ce, or La-modified Co/H-β. Fuel, 2020, 262, 116490.	3.4	12
118	RENEWABLE GASOLINE PRODUCED BY CO-CRACKING OF METHANOL AND KETONES IN BIO-OIL. BioResources, 2012, 7, .	0.5	12
119	EDTA chemical directly orient CO2 hydrogenation towards olefins. Chemical Engineering Journal, 2022, 438, 135597.	6.6	12
120	Effect of Ni Precipitation Method on CO Methanation over Ni/TiO2 Catalysts. Chemical Research in Chinese Universities, 2018, 34, 296-301.	1.3	11
121	Catalytic Reforming of the Aqueous Phase Derived from Diluted Hydrogen Peroxide Oxidation of Waste Polyethylene for Hydrogen Production. ChemSusChem, 2021, 14, 4270-4279.	3.6	11
122	Preparation of Nitrogen and Sulfur Coâ€doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO ₂ Atmosphere for Symmetric Supercapacitors. ChemElectroChem, 2021, 8, 3745-3754.	1.7	11
123	DFT-D2 Study of the Adsorption of Bio-Oil Model Compounds in HZSM-5: C1–C4 Carboxylic Acids. Catalysis Letters, 2016, 146, 2015-2024.	1.4	10
124	Pyrolysis of boron-crosslinked lignin: Influence on lignin softening and product properties. Bioresource Technology, 2022, 355, 127218.	4.8	10
125	Production of Bio-gasoline by Co-cracking of Acetic Acid in Bio-oil and Ethanol. Chinese Journal of Chemical Engineering, 2014, 22, 98-103.	1.7	9
126	Comparative Life Cycle Assessment of Ethanol Synthesis from Corn Stover by Direct and Indirect Thermochemical Conversion Processes. Energy & amp; Fuels, 2015, 29, 7998-8005.	2.5	9

#	Article	IF	CITATIONS
127	Aromatic Hydrocarbon Production from Bio-Oil by a Dual-Stage Hydrogenation-Cocracking Process: Furfural as a Model Compound. Industrial & Engineering Chemistry Research, 2016, 55, 10839-10849.	1.8	9
128	Green Conversion of Microalgae into Highâ€Performance Spongeâ€like Nitrogenâ€Enriched Carbon. ChemElectroChem, 2019, 6, 602-602.	1.7	9
129	Novel Approach on Developing TiO ₂ -Supported Heteropolyacids Catalyst for the Efficient Conversion of Xylose to Furfural. Energy & Fuels, 2022, 36, 7599-7607.	2.5	9
130	Review of Bio-oil Upgrading Technologies and Experimental Study on Emulsification of Bio-oil and Diesel. , 2010, , .		8
131	Simulation Study of Thermochemical Process from Biomass to Higher Alcohols. Energy & Fuels, 2016, 30, 9440-9450.	2.5	8
132	The catalytic properties evolution of HZSM-5 in the conversion of methanol to gasoline. RSC Advances, 2016, 6, 82515-82522.	1.7	8
133	Selective Fischer–Tropsch synthesis for jet fuel production over Y ³⁺ modified Co/H-β catalysts. Sustainable Energy and Fuels, 2020, 4, 3528-3536.	2.5	8
134	Fabricating Bifunctional Coâ^'Al ₂ O ₃ @USY Catalyst via In‧itu Growth Method for Mild Hydrodeoxygenation of Lignin to Naphthenes. ChemCatChem, 2022, 14, .	1.8	8
135	Global warming potential analysis of bio-jet fuel based on life cycle assessment. , 2022, 1, .		8
136	Commercialization and Challenges for the Next Generation of Biofuels: Biomass Fast Pyrolysis. , 2010, ,		6
137	Density functional theory study of ethanol synthesis from dimethyl ether and syngas over cobalt catalyst. Molecular Catalysis, 2017, 432, 115-124.	1.0	6
138	Virtual Special Issue of Recent Research Advances in China: Thermochemical Processing of Biomass and Solid Wastes. Energy & Fuels, 2021, 35, 1885-1889.	2.5	6
139	Selective Demethoxylation of Lignin-Derived Methoxyphenols to Phenols over Lignin-Derived-Biochar-Supported Mo ₂ C Catalysts. Energy & Fuels, 2021, 35, 17138-17148.	2.5	6
140	Bio-oil graded upgrading and utilization based on separation. Biofuels, 2013, 4, 135-137.	1.4	5
141	Direct conversion of syngas to gasoline ranged olefins over Na impellent Fe@NaZSM-5 catalyst. Fuel, 2022, 308, 121938.	3.4	5
142	Experimental Research on Catalytic Esterification of Bio-Oil Volatile Fraction. , 2010, , .		4
143	Preparation of energy platform chemicals by hydrothermal conversion of citrus peel. Energy Science and Engineering, 2021, 9, 1033-1041.	1.9	4
144	Experimental study and product analysis of lignocellulosic biomass hydrolysis under extremely low acids. Frontiers of Energy and Power Engineering in China, 2008, 2, 268-272.	0.4	3

#	Article	IF	CITATIONS
145	Characterization and Analysis of Char Produced by Biomass Fast Pyrolysis. , 2010, , .		3
146	Synthetic fuels and chemicals production from biomass synthesis gas. , 2010, , .		2
147	Hydrogenation of dimethyl oxalate to ethylene glycol over Cu/SiO <inf>2</inf> catalysts. , 2011, , .		2
148	Experimental Study of the Effect of Spray Medium on the Collection of Bio-Oil Produced from Biomass Fast Pyrolysis. , 2009, , .		1
149	Catalytic Cracking of Ketone Components in Biomass Pyrolysis Oil. , 2010, , .		1
150	Ethylene glycol and ethanol synthesis from dimethyl oxalate hydrogenation on the Cu/ZnO/SiO ₂ catalysts. , 2011, , .		1
151	Thermodynamic Simulation of Direct DME Synthesis via Biomass Gasification. , 2010, , .		0
152	Effect of Salt Addition on the Emulsification of Bio-Oil and Diesel. , 2011, , .		0
153	Catalytic pyrolysis of cellulose with zeolites. , 2011, , .		0
154	Study on synthesis of dimethyl ether from syngas obtained by biomass gasification. , 2011, , .		0
155	Properties of Bio-Oil from Alga Fast Pyrolysis. , 2011, , .		0