
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8294366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 2012, 5, 1471-1492.	1.3	2,535
2	Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 2010, 3, 43-67.	1.3	1,590
3	The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 2011, 4, 625-641.	1.3	1,278
4	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935
5	A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	848
6	CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development, 2012, 5, 369-411.	1.3	633
7	Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. Journal of Geophysical Research, 2003, 108, .	3.3	510
8	Observational constraints on recent increases in the atmospheric CH ₄ burden. Geophysical Research Letters, 2009, 36, .	1.5	499
9	The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results. Atmospheric Chemistry and Physics, 2010, 10, 5191-5212.	1.9	419
10	Asian Monsoon Transport of Pollution to the Stratosphere. Science, 2010, 328, 611-613.	6.0	406
11	Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. Journal of Geophysical Research, 2003, 108, .	3.3	378
12	Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 2014, 14, 5617-5638.	1.9	292
13	MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. Journal of Geophysical Research, 1998, 103, 28291-28335.	3.3	264
14	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
15	Satellite-observed pollution from Southern Hemisphere biomass burning. Journal of Geophysical Research, 2006, 111, .	3.3	259
16	Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 2006, 111, .	3.3	254
17	Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. Journal of Geophysical Research, 2004, 109, .	3.3	213
18	Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	209

#	Article	IF	CITATIONS
19	Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 2007, 112, .	3.3	200
20	Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	196
21	Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection. Journal of Geophysical Research, 2007, 112, .	3.3	194
22	Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). Journal of Geophysical Research, 2009, 114, .	3.3	191
23	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
24	Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmospheric Chemistry and Physics, 2008, 8, 757-764.	1.9	178
25	Data composites of airborne observations of tropospheric ozone and its precursors. Journal of Geophysical Research, 2000, 105, 20497-20538.	3.3	175
26	Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	171
27	Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 7257-7287.	1.9	170
28	Effects of aerosols on tropospheric oxidants: A global model study. Journal of Geophysical Research, 2001, 106, 22931-22964.	3.3	165
29	Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophysical Research Letters, 2005, 32, .	1.5	163
30	Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geoscientific Model Development, 2015, 8, 1395-1426.	1.3	159
31	Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZARTâ€4. Journal of Geophysical Research, 2008, 113, .	3.3	154
32	Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nature Geoscience, 2016, 9, 490-495.	5.4	149
33	Vertical resolution and information content of CO profiles retrieved by MOPITT. Geophysical Research Letters, 2004, 31, .	1.5	139
34	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	1.9	138
35	The MOPITT version 4 CO product: Algorithm enhancements, validation, and longâ€ŧerm stability. Journal of Geophysical Research, 2010, 115, .	3.3	137
36	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.	1.9	131

#	Article	IF	CITATIONS
37	Measurements of Pollution In The Troposphere (MOPITT) validation through 2006. Atmospheric Chemistry and Physics, 2009, 9, 1795-1803.	1.9	124
38	Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890.	1.3	122
39	Impacts of the fall 2007 California wildfires on surface ozone: Integrating local observations with global model simulations. Geophysical Research Letters, 2008, 35, .	1.5	121
40	Tropospheric ozone over the tropical Atlantic: A satellite perspective. Journal of Geophysical Research, 2003, 108, .	3.3	119
41	Validation of MOPITT Version 5 thermalâ€infrared, nearâ€infrared, and multispectral carbon monoxide profile retrievals for 2000–2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6710-6725.	1.2	119
42	Ozone production from the 2004 North American boreal fires. Journal of Geophysical Research, 2006, 111, .	3.3	114
43	How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks. Atmospheric Chemistry and Physics, 2015, 15, 2805-2823.	1.9	105
44	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	1.9	105
45	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	102
46	Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications. Atmospheric Chemistry and Physics, 2012, 12, 7475-7497.	1.9	101
47	Measurements of Pollution in the Troposphere (MOPITT) validation exercises during summer 2004 field campaigns over North America. Journal of Geophysical Research, 2007, 112, .	3.3	98
48	The MOPITT Version 6 product: algorithm enhancements and validation. Atmospheric Measurement Techniques, 2014, 7, 3623-3632.	1.2	92
49	Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison. Atmospheric Environment, 2015, 115, 553-568.	1.9	92
50	Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast. Atmospheric Chemistry and Physics, 2011, 11, 1769-1790.	1.9	90
51	Tropospheric ozone in CMIP6 simulations. Atmospheric Chemistry and Physics, 2021, 21, 4187-4218.	1.9	89
52	Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.	1.3	87
53	Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmospheric Chemistry and Physics, 2015, 15, 3575-3603.	1.9	83
54	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	1.9	82

#	Article	IF	CITATIONS
55	Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America. Environmental Research Letters, 2016, 11, 044010.	2.2	82
56	The Korea–United States Air Quality (KORUS-AQ) field study. Elementa, 2021, 9, 1-27.	1.1	82
57	CO source contribution analysis for California during ARCTAS-CARB. Atmospheric Chemistry and Physics, 2011, 11, 7515-7532.	1.9	79
58	Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT). Journal of Geophysical Research, 2006, 111, .	3.3	78
59	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. Journal of Geophysical Research, 2003, 108, TOP 4-1.	3.3	75
60	Evaluation of CO simulations and the analysis of the CO budget for Europe. Journal of Geophysical Research, 2004, 109, .	3.3	75
61	The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. Environmental Fluid Mechanics, 2009, 9, 43-58.	0.7	72
62	Effect of sulfate aerosol on tropospheric NOxand ozone budgets: Model simulations and TOPSE evidence. Journal of Geophysical Research, 2003, 108, .	3.3	70
63	Carbon monoxide pollution from cities and urban areas observed by the Terra/MOPITT mission. Geophysical Research Letters, 2008, 35, .	1.5	68
64	Satellite constraints of nitrogen oxide (NO <i>_x</i>) emissions from India based on OMI observations and WRF hem simulations. Geophysical Research Letters, 2013, 40, 423-428.	1.5	67
65	Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere. Journal of Geophysical Research, 2001, 106, 3167-3178.	3.3	66
66	Ozone pollution from future ship traffic in the Arctic northern passages. Geophysical Research Letters, 2006, 33, .	1.5	66
67	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
68	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	1.9	62
69	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	1.9	62
70	Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. Journal of Geophysical Research, 2003, 108, .	3.3	59
71	Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models. Geoscientific Model Development, 2012, 5, 1531-1542.	1.3	59
72	Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx. Geophysical Research Letters, 2005, 32, .	1.5	57

#	Article	IF	CITATIONS
73	New observations of a large concentration of ClO in the springtime lower stratosphere over Antarctica and its implications for ozoneâ€depleting chemistry. Journal of Geophysical Research, 1989, 94, 11423-11428.	3.3	56
74	Budget of tropospheric ozone during TOPSE from two chemical transport models. Journal of Geophysical Research, 2003, 108, .	3.3	56
75	Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics, 2020, 20, 12905-12920.	1.9	55
76	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	1.9	54
77	Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission. Atmospheric Chemistry and Physics, 2007, 7, 5695-5710.	1.9	53
78	Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia. Atmospheric Chemistry and Physics, 2014, 14, 12983-13012.	1.9	53
79	Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZARTâ€4) simulations. Journal of Geophysical Research, 2008, 113, .	3.3	51
80	Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics, 2017, 17, 5721-5750.	1.9	51
81	Balance of Emission and Dynamical Controls on Ozone During the Koreaâ€United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 387-413.	1.2	51
82	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
83	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 277-294.	1.4	49
84	Chemical Feedback From Decreasing Carbon Monoxide Emissions. Geophysical Research Letters, 2017, 44, 9985-9995.	1.5	49
85	Multi-model study of HTAPÂII on sulfur and nitrogen deposition. Atmospheric Chemistry and Physics, 2018, 18, 6847-6866.	1.9	49
86	The impact of future emission policies on tropospheric ozone using a parameterised approach. Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.	1.9	47
87	Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US. Atmospheric Chemistry and Physics, 2020, 20, 3739-3776.	1.9	47
88	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elementa, 2020, 8, .	1.1	44
89	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.	1.9	43
90	Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations. Atmospheric Chemistry and Physics, 2015, 15, 6047-6068.	1.9	43

#	Article	IF	CITATIONS
91	Global and regional radiative forcing from 20†% reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	1.9	42
92	The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950: implications for the CO budget. Atmospheric Chemistry and Physics, 2012, 12, 4365-4377.	1.9	41
93	Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 2017, 44, 7965-7974.	1.5	41
94	Atmospheric Acetaldehyde: Importance of Airâ€6ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
95	Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign. Elementa, 2021, 9, .	1.1	41
96	Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sensing of Environment, 2021, 256, 112275.	4.6	41
97	Evaluation of operational radiances for the Measurements of Pollution in the Troposphere (MOPITT) instrument CO thermal band channels. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	40
98	Identification of CO plumes from MOPITT data: Application to the August 2000 Idaho-Montana forest fires. Geophysical Research Letters, 2003, 30, .	1.5	39
99	Toward a chemical reanalysis in a coupled chemistry limate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7310-7343.	1.2	37
100	Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmospheric Chemistry and Physics, 2021, 21, 14427-14469.	1.9	37
101	Pollution transport from North America to Greenland during summer 2008. Atmospheric Chemistry and Physics, 2013, 13, 3825-3848.	1.9	34
102	The effects of intercontinental emission sources on European air pollution levels. Atmospheric Chemistry and Physics, 2018, 18, 13655-13672.	1.9	34
103	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
104	Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.	1.9	33
105	Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	32
106	Hydrocarbons in the upper troposphere and lower stratosphere observed from ACEâ€FTS and comparisons with WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1964-1980.	1.2	32
107	Effects of trans‣urasian transport of air pollutants on surface ozone concentrations over Western China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,338.	1.2	31
108	Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions. Atmospheric Chemistry and Physics, 2015, 15, 7217-7245.	1.9	31

#	Article	IF	CITATIONS
109	Interpreting space-based trends in carbon monoxide with multiple models. Atmospheric Chemistry and Physics, 2016, 16, 7285-7294.	1.9	31
110	Application of a bias estimator for the improved assimilation of Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals. Journal of Geophysical Research, 2004, 109, .	3.3	30
111	Impact of the summer 2004 Alaska fires on top of the atmosphere clearâ€sky radiation fluxes. Journal of Geophysical Research, 2008, 113, .	3.3	30
112	Satellite constraints of Nitrogen Oxide (NOX) emissions from India based on OMI observations and WRF-Chem simulations. Geophysical Research Letters, 2013, 40, 423.	1.5	30
113	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	1.9	30
114	Air quality simulations of wildfires in the Pacific Northwest evaluated with surface and satellite observations during the summers of 2007 and 2008. Atmospheric Chemistry and Physics, 2014, 14, 12533-12551.	1.9	29
115	Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models. Atmospheric Chemistry and Physics, 2015, 15, 2227-2246.	1.9	28
116	Quantifying the causes of differences in tropospheric OH within global models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1983-2007.	1.2	27
117	Ozone variability in the troposphere and the stratosphere from the first 6 years of IASI observations (2008–2013). Atmospheric Chemistry and Physics, 2016, 16, 5721-5743.	1.9	25
118	Attributing and quantifying carbon monoxide sources affecting the Eastern Mediterranean: a combined satellite, modelling, and synoptic analysis study. Atmospheric Chemistry and Physics, 2012, 12, 1067-1082.	1.9	24
119	Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. Journal of Geophysical Research, 2012, 117, .	3.3	24
120	Australia's Black Saturday fires – Comparison of techniques for estimating emissions from vegetation fires. Atmospheric Environment, 2012, 60, 262-270.	1.9	23
121	Quantifying the contribution of inflow on surface ozone over California during summer 2008. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,282.	1.2	23
122	Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geoscientific Model Development, 2021, 14, 5487-5506.	1.3	23
123	Assimilation of the 2000–2001 CO MOPITT retrievals with optimized surface emissions. Geophysical Research Letters, 2004, 31, .	1.5	22
124	Variability of springtime transpacific pollution transport during 2000–2006: the INTEX-B mission in the context of previous years. Atmospheric Chemistry and Physics, 2010, 10, 1345-1359.	1.9	22
125	A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc. Geoscientific Model Development, 2019, 12, 2983-3000.	1.3	22
126	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	1.5	22

#	Article	IF	CITATIONS
127	Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESMâ€CAMâ€chem and DART. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,501.	1.2	21
128	Source contributions to sulfur and nitrogen deposition – an HTAP II multi-model study on hemispheric transport. Atmospheric Chemistry and Physics, 2018, 18, 12223-12240.	1.9	21
129	Source Contributions to Carbon Monoxide Concentrations During KORUSâ€AQ Based on CAMâ€chem Model Applications. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2796-2822.	1.2	21
130	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
131	Simulated Global Climate Response to Tropospheric Ozoneâ€Induced Changes in Plant Transpiration. Geophysical Research Letters, 2018, 45, 13070-13079.	1.5	20
132	Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	20
133	Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimilated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition. Atmospheric Chemistry and Physics, 2012, 12, 5603-5615.	1.9	18
134	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	1.2	18
135	Characterization of carbon monoxide, methane and nonmethane hydrocarbons in emerging cities of Saudi Arabia and Pakistan and in Singapore. Journal of Atmospheric Chemistry, 2017, 74, 87-113.	1.4	18
136	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.	1.9	18
137	13 years of MOPITT operations: lessons from MOPITT retrieval algorithm development. Annals of Geophysics, 2014, , .	0.5	18
138	Measurements of stratospheric hydrogen cyanide at McMurdo Station, Antarctica: Further evidence of winter stratospheric subsidence?. Journal of Geophysical Research, 1989, 94, 16773-16777.	3.3	17
139	An overview of millimeter-wave spectroscopic measurements of chlorine monoxide at Thule, Greenland, February-March, 1992: Vertical profiles, diurnal variation, and longer-term trends. Geophysical Research Letters, 1994, 21, 1271-1274.	1.5	17
140	Relationship between Measurements of Pollution in the Troposphere (MOPITT) and in situ observations of CO based on a large-scale feature sampled during TRACE-P. Journal of Geophysical Research, 2004, 109, .	3.3	17
141	Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2015, 15, 13487-13506.	1.9	17
142	Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Shortâ€Lived Ozoneâ€Depleting Substances: A Machineâ€Learning Approach. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12319-12339.	1.2	17
143	Global Atmospheric Budget of Acetone: Air ea Exchange and the Contribution to Hydroxyl Radicals. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032553.	1.2	17
144	Development and Evaluation of Chemistryâ€Aerosolâ€Climate Model CAM5â€Chemâ€MAM7â€MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002346.	1.3	17

LOUISA EMMONS

#	Article	IF	CITATIONS
145	Stratospheric ClO profiles from McMurdo Station, Antarctica, spring 1992. Journal of Geophysical Research, 1995, 100, 3049.	3.3	16
146	Estimated total emissions of trace gases from the Canberra Wildfires of 2003: a new method using satellite measurements of aerosol optical depth & the MOZART chemical transport model. Atmospheric Chemistry and Physics, 2010, 10, 5739-5748.	1.9	16
147	Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmospheric Measurement Techniques, 2020, 13, 1337-1356.	1.2	16
148	Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric Chemistry and Physics, 2021, 21, 3395-3425.	1.9	16
149	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	1.2	16
150	Inferring carbon monoxide pollution changes from space-based observations. Journal of Geophysical Research, 2005, 110, .	3.3	15
151	Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory. Atmospheric Chemistry and Physics, 2017, 17, 10619-10631.	1.9	15
152	Links Between Carbon Monoxide and Climate Indices for the Southern Hemisphere and Tropical Fire Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9786-9800.	1.2	15
153	Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 3217-3239.	1.9	14
154	Using an Inverse Model to Reconcile Differences in Simulated and Observed Global Ethane Concentrations and Trends Between 2008 and 2014. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,262.	1.2	14
155	Radiative Forcing of Nitrate Aerosols From 1975 to 2010 as Simulated by MOSAIC Module in CESM2â€MAM4. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034809.	1.2	14
156	Arctic chlorine monoxide observations during spring 1993 over Thule, Greenland, and implications for ozone depletion. Journal of Geophysical Research, 1994, 99, 25697.	3.3	13
157	Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation. Journal of Geophysical Research, 2007, 112, .	3.3	13
158	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2018, 18, 15581-15600.	1.9	12
159	CESM/CAM5 improvement and application: comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate. Geoscientific Model Development, 2015, 8, 3999-4025.	1.3	11
160	Joint Application of Concentration and δ180 to Investigate the Global Atmospheric CO Budget. Atmosphere, 2015, 6, 547-578.	1.0	11
161	N2O as an indicator of Arctic vortex dynamics: Correlations with O3over Thule, Greenland in February and March, 1992. Geophysical Research Letters, 1994, 21, 1275-1278.	1.5	10
162	Quantifying Nitrous Acid Formation Mechanisms Using Measured Vertical Profiles During the CalNex 2010 Campaign and 1D Column Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034689.	1.2	10

LOUISA EMMONS

#	Article	IF	CITATIONS
163	Comparison of upper tropospheric carbon monoxide from MOPITT, ACEâ€FTS, and HIPPOâ€QCLS. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,144.	1.2	9
164	Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry. Geoscientific Model Development, 2018, 11, 4155-4174.	1.3	9
165	Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1). Atmospheric Chemistry and Physics, 2021, 21, 8003-8021.	1.9	9
166	Observation of a strong inverse temperature dependence for the opacity of atmospheric water vapor in the MM continuum near 280 GHz. Journal of Infrared, Millimeter and Terahertz Waves, 1990, 11, 469-488.	0.6	8
167	Large interannual variations in nonmethane volatile organic compound emissions based on measurements of carbon monoxide. Geophysical Research Letters, 2013, 40, 221-226.	1.5	7
168	Maximizing ozone signals among chemical, meteorological, and climatological variability. Atmospheric Chemistry and Physics, 2018, 18, 8373-8388.	1.9	7
169	The impact of Los Angeles Basin pollution and stratospheric intrusions on the surrounding San Gabriel Mountains as seen by surface measurements, lidar, and numerical models. Atmospheric Chemistry and Physics, 2021, 21, 6129-6153.	1.9	6
170	Assessing sub-grid variability within satellite pixels over urban regions using airborne mapping spectrometer measurements. Atmospheric Measurement Techniques, 2021, 14, 4639-4655.	1.2	6
171	Preface to a Special Issue "Megacity Air Pollution Studies (MAPS)― Aerosol and Air Quality Research, 2018, 18, I-IV.	0.9	6
172	Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
173	The Role of Snow in Controlling Halogen Chemistry and Boundary Layer Oxidation During Arctic Spring: A 1D Modeling Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
174	Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
175	Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements. Atmospheric Chemistry and Physics, 2021, 21, 13729-13746.	1.9	4
176	Variation of atmospheric CO, δ ¹³ C, and δ ¹⁸ O at high northern latitude during 2004–2009: Observations and model simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,024.	1.2	3
177	Fate of Pollution Emitted During the 2015 Indonesian Fire Season. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033474.	1.2	3
178	Measurement of atmospheric opacity at 278 GHz at McMurdo Station, Antarctica in austral spring seasons, 1986 and 1987. Journal of Infrared, Millimeter and Terahertz Waves, 1990, 11, 463-467.	0.6	2
179	Measurement of the cooling capacity of an RMCâ€Cryosystems Model LTS 4.5â€025 closedâ€cycle helium refrigerator. Review of Scientific Instruments, 1991, 62, 1309-1310.	0.6	1
180	Procedure for computer-controlled milling of accurate surfaces of revolution for millimeter and far-infrared mirrors. Applied Optics, 1991, 30, 3163.	2.1	0

#	Article	IF	CITATIONS
181	Data assimilation of carbon monoxide in the troposphere. , 2006, 6299, 84.		0
182	The impact of MOPITT data on tropospheric chemistry. , 2010, , .		0
183	Retrieval algorithm development and product validation for TERRA/MOPITT. , 2014, , .		0