List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8293922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries. Chemical Engineering Journal, 2022, 427, 131988.	6.6	40
2	Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chemical Engineering Journal, 2022, 428, 131283.	6.6	43
3	Disproportionation enabling reversible MnO2/Mn2+ transformation in a mild aqueous Zn-MnO2 hybrid battery. Chemical Engineering Journal, 2022, 430, 133064.	6.6	33
4	Facilitating Mg2+ diffusion in high potential LixV2(PO4)3 cathode material with a co-insertion strategy for rechargeable Mg-ion batteries. Journal of Power Sources, 2022, 520, 230853.	4.0	10
5	A Longâ€Life Manganese Oxide Cathode Material for Aqueous Zinc Batteries with a Negatively Charged Porous Host to Promote the Backâ€Deposition of Dissolved Mn ²⁺ . Advanced Functional Materials, 2022, 32, 2106994.	7.8	39
6	Highly sensitive novel fluorescent chiral probe possessing (S)-2-methylproline structures for the determination of chiral amino compounds by ultra-performance liquid chromatography with fluorescence: An application in the saliva of healthy volunteer. Journal of Chromatography A, 2022, 1661, 462672.	1.8	4
7	Regulating the electro-deposition behavior of Fe metal anode and the applications in rechargeable aqueous iron-iodine batteries. Chemical Engineering Journal, 2022, 432, 134389.	6.6	12
8	Protonating imine sites of polyaniline for aqueous zinc batteries. Chemical Communications, 2022, 58, 1693-1696.	2.2	17
9	Enabling Reversible MnO ₂ /Mn ²⁺ Transformation by Al ³⁺ Addition for Aqueous Zn–MnO ₂ Hybrid Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10526-10534.	4.0	20
10	Decavanadate Doped Polyaniline for Aqueous Zinc Batteries. Small, 2022, 18, e2107689.	5.2	32
11	A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries. Energy Storage Materials, 2022, 49, 11-18.	9.5	20
12	The back-deposition of dissolved Mn ²⁺ to MnO ₂ cathodes for stable cycling in aqueous zinc batteries. Chemical Communications, 2022, 58, 4845-4848.	2.2	3
13	Stabilization of VOPO ₄ ·2H ₂ O voltage and capacity retention in aqueous zinc batteries with a hydrogen bond regulator. Chemical Communications, 2022, 58, 5905-5908.	2.2	3
14	High-Voltage Manganese Oxide Cathode with Two-Electron Transfer Enabled by a Phosphate Proton Reservoir for Aqueous Zinc Batteries. ACS Energy Letters, 2022, 7, 1814-1819.	8.8	33
15	Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes. Renewable Energy, 2022, 194, 366-377.	4.3	13
16	An amphoteric betaine electrolyte additive enabling a stable Zn metal anode for aqueous batteries. Chemical Communications, 2022, 58, 8504-8507.	2.2	15
17	A High Potential Polyanion Cathode Material for Rechargeable Mgâ€lon Batteries. Small Methods, 2022, 6, .	4.6	9
18	Ammoniumâ€lon Storage Using Electrodeposited Manganese Oxides. Angewandte Chemie - International Edition, 2021, 60, 5718-5722.	7.2	155

#	Article	IF	CITATIONS
19	Redox Polyâ€Counterion Doped Conducting Polymers for Pseudocapacitive Energy Storage. Advanced Functional Materials, 2021, 31, .	7.8	42
20	The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chemical Communications, 2021, 57, 6253-6256.	2.2	10
21	Ammoniumâ€ion Storage Using Electrodeposited Manganese Oxides. Angewandte Chemie, 2021, 133, 5782-5786.	1.6	26
22	Boosting the capacitive performance of hierarchical cobalt molybdate hybrid electrodes for asymmetric supercapacitors. Journal of Materials Science, 2021, 56, 10965-10978.	1.7	6
23	A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nature Communications, 2021, 12, 4424.	5.8	180
24	Accessing the 2ÂV VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries. Journal of Power Sources, 2021, 507, 230270.	4.0	5
25	The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chemical Engineering Journal, 2021, 419, 129659.	6.6	35
26	Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 419, 129491.	6.6	45
27	Heterostructured polypyrrole/hybrid iron oxide composite film as highly stable anode for pseudocapacitors. Journal of Power Sources, 2021, 513, 230550.	4.0	3
28	Electrochemical <i>in situ</i> construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. Journal of Materials Chemistry A, 2020, 8, 1176-1183.	5.2	43
29	Activating the Highly Reversible Mo ⁴⁺ /Mo ⁵⁺ Redox Couple in Amorphous Molybdenum Oxide for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 48565-48571.	4.0	28
30	Interlayer Engineering of Layered Cathode Materials for Advanced Zn Storage. CheM, 2020, 6, 817-819.	5.8	7
31	Heterojunction induced activation of iron oxide anode for high-power aqueous batteries. Chemical Engineering Journal, 2020, 400, 125874.	6.6	21
32	Frontispiece: The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, .	1.7	0
33	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, 8190-8204.	1.7	21
34	Direct Nano‧ynthesis Methods Notably Benefit Mgâ€Battery Cathode Performance. Small Methods, 2020, 4, 2000029.	4.6	33
35	A polyanionic molybdenophosphate anode for a 2.7â€V aqueous pseudocapacitor. Nano Energy, 2019, 65, 104010.	8.2	55
36	A Zn(ClO ₄) ₂ Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42000-42005.	4.0	111

#	Article	IF	CITATIONS
37	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie, 2019, 131, 16203-16207.	1.6	6
38	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie - International Edition, 2019, 58, 16057-16061.	7.2	125
39	3D Exfoliated Carbon Paper toward Highly Loaded Aqueous Energy Storage Applications. Energy Technology, 2019, 7, 1900892.	1.8	9
40	Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochimica Acta, 2019, 325, 134877.	2.6	20
41	Boosting the pseudocapacitance of nitrogen-rich carbon nanorod arrays for electrochemical capacitors. Journal of Materials Chemistry A, 2019, 7, 12086-12094.	5.2	32
42	Strongly coupled polypyrrole/molybdenum oxide hybrid films <i>via</i> electrochemical layer-by-layer assembly for pseudocapacitors. Journal of Materials Chemistry A, 2019, 7, 9815-9821.	5.2	28
43	Immobilization of phosphotungstate through doping in polypyrrole for supercapacitors. Dalton Transactions, 2019, 48, 6812-6816.	1.6	8
44	A high performance tungsten bronze electrode in a mixed electrolyte and applications in supercapacitors. Chemical Communications, 2019, 55, 14323-14326.	2.2	7
45	Solvent-Engineered Design of Argyrodite Li ₆ PS ₅ X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Letters, 2019, 4, 265-270.	8.8	207
46	High Mass Loading MnO ₂ with Hierarchical Nanostructures for Supercapacitors. ACS Nano, 2018, 12, 3557-3567.	7.3	447
47	NaV _{1.25} Ti _{0.75} O ₄ : A Potential Post-Spinel Cathode Material for Mg Batteries. Chemistry of Materials, 2018, 30, 121-128.	3.2	37
48	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2018, 57, 16359-16363.	7.2	346
49	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2018, 130, 16597-16601.	1.6	107
50	Insights into Mg ²⁺ Intercalation in a Zero-Strain Material: Thiospinel Mg _{<i>x</i>} Zr ₂ S ₄ . Chemistry of Materials, 2018, 30, 4683-4693.	3.2	36
51	VO <i>_x</i> @MoO ₃ Nanorod Composite for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803901.	7.8	52
52	Morphology engineering of electro-deposited iron oxides for aqueous rechargeable Ni/Fe battery applications. Chemical Engineering Journal, 2018, 354, 672-679.	6.6	22
53	Monovalent versus Divalent Cation Diffusion in Thiospinel Ti ₂ S ₄ . Journal of Physical Chemistry Letters, 2017, 8, 2253-2257.	2.1	37
54	Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorganic Chemistry, 2017, 56, 9931-9937.	1.9	4

#	Article	IF	CITATIONS
55	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864
56	Methods and Protocols for Electrochemical Energy Storage Materials Research. Chemistry of Materials, 2017, 29, 90-105.	3.2	141
57	A high capacity thiospinel cathode for Mg batteries. Energy and Environmental Science, 2016, 9, 2273-2277.	15.6	349
58	Prussian Blue MgLi Hybrid Batteries. Advanced Science, 2016, 3, 1600044.	5.6	89
59	Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chemical Communications, 2016, 52, 12458-12461.	2.2	86
60	Impact of intermediate sites on bulk diffusion barriers: Mg intercalation in Mg ₂ Mo ₃ O ₈ . Journal of Materials Chemistry A, 2016, 4, 17643-17648.	5.2	27
61	Layered TiS ₂ Positive Electrode for Mg Batteries. ACS Energy Letters, 2016, 1, 297-301.	8.8	310
62	Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries. Chemistry of Materials, 2016, 28, 534-542.	3.2	287
63	Characterization of 57 microsatellite loci for Rapana venosa using genomic next generation sequencing. Conservation Genetics Resources, 2014, 6, 941-945.	0.4	4
64	Ultra-rapid microwave synthesis of triplite LiFeSO4F. Journal of Materials Chemistry A, 2013, 1, 2990.	5.2	43