Neil C Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8293737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010, 464, 108-111.	13.7	885
2	Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells. Cell, 2013, 153, 1134-1148.	13.5	689
3	Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics, 2002, 18, 41-47.	2.9	410
4	ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nature Genetics, 2009, 41, 396-398.	9.4	409
5	Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nature Methods, 2007, 4, 323-326.	9.0	375
6	Foxn4 directly regulates <i>tbx2b</i> expression and atrioventricular canal formation. Genes and Development, 2008, 22, 734-739.	2.7	339
7	Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors. Cell, 2008, 135, 1053-1064.	13.5	306
8	Efficient Generation of Human iPSCs by a Synthetic Self-Replicative RNA. Cell Stem Cell, 2013, 13, 246-254.	5.2	253
9	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	9.4	236
10	Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology, 2008, 6, e109.	2.6	233
11	In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.	13.7	229
12	Zebrafish model for human long QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11316-11321.	3.3	215
13	Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. Journal of Clinical Investigation, 2010, 120, 266-279.	3.9	213
14	Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 2015, 518, 350-354.	13.7	201
15	Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nature Genetics, 2015, 47, 809-813.	9.4	180
16	An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood, 2013, 122, e1-e11.	0.6	163
17	Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature, 2016, 535, 294-298.	13.7	151
18	iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports, 2017, 8, 1086-1100.	2.3	147

NEIL C CHI

#	Article	IF	CITATIONS
19	Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Developmental Biology, 2009, 334, 213-223.	0.9	139
20	BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm, 2012, 9, 812-820.	0.3	134
21	A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Developmental Biology, 2007, 307, 29-42.	0.9	123
22	<i>Iroquois homeobox gene 3</i> establishes fast conduction in the cardiac His–Purkinje network. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13576-13581.	3.3	109
23	Cardiac conduction is required to preserve cardiac chamber morphology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14662-14667.	3.3	103
24	4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. Journal of Clinical Investigation, 2016, 126, 1679-1690.	3.9	100
25	Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. Cardiovascular Research, 2004, 61, 437-447.	1.8	95
26	Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron, 2014, 84, 1226-1239.	3.8	95
27	Zebrafish models in cardiac development and congenital heart birth defects. Differentiation, 2012, 84, 4-16.	1.0	90
28	Different Binding Domains for Ran-GTP and Ran-GDP/RanBP1 on Nuclear Import Factor p97. Journal of Biological Chemistry, 1997, 272, 6818-6822.	1.6	81
29	Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Developmental Biology, 2012, 362, 121-131.	0.9	78
30	Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature, 2016, 534, 700-704.	13.7	75
31	Brief Report: Oxidative Stress Mediates Cardiomyocyte Apoptosis in a Human Model of Danon Disease and Heart Failure. Stem Cells, 2015, 33, 2343-2350.	1.4	74
32	Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. American Journal of Human Genetics, 2016, 99, 501-510.	2.6	70
33	Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.	9.4	66
34	Cardiac cell type–specific gene regulatory programs and disease risk association. Science Advances, 2021, 7, .	4.7	63
35	Shear Stress–Activated Wnt-Angiopoietin-2 Signaling Recapitulates Vascular Repair in Zebrafish Embryos. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2268-2275.	1.1	58
36	Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Developmental Cell, 2019, 50, 729-743.e5.	3.1	58

Neil C Chi

#	Article	IF	CITATIONS
37	Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology, 2017, 108, 86-94.	0.9	57
38	Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure. Nature Communications, 2020, 11, 1122.	5.8	57
39	Moving Domain Computational Fluid Dynamics to Interface with an Embryonic Model of Cardiac Morphogenesis. PLoS ONE, 2013, 8, e72924.	1.1	51
40	Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomedical Microdevices, 2012, 14, 357-366.	1.4	50
41	Unveiling Complexity and Multipotentiality of Early Heart Fields. Circulation Research, 2021, 129, 474-487.	2.0	50
42	UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development (Cambridge), 2013, 140, 1713-1719.	1.2	45
43	Cell-Surface Marker Signature for Enrichment of Ventricular Cardiomyocytes Derived from Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 828-841.	2.3	37
44	Combinatorial interactions of genetic variants in human cardiomyopathy. Nature Biomedical Engineering, 2019, 3, 147-157.	11.6	37
45	FGF signaling enforces cardiac chamber identity in the developing ventricle. Development (Cambridge), 2017, 144, 1328-1338.	1.2	36
46	Identification of Distal <i>cis</i> -Regulatory Elements at Mouse Mitoferrin Loci Using Zebrafish Transgenesis. Molecular and Cellular Biology, 2011, 31, 1344-1356.	1.1	31
47	Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. ELife, 2019, 8, .	2.8	30
48	Evolving Cardiac Conduction Phenotypes in Developing Zebrafish Larvae: Implications to Drug Sensitivity. Zebrafish, 2010, 7, 325-331.	0.5	24
49	Myocardial plasticity: cardiac development, regeneration and disease. Current Opinion in Genetics and Development, 2016, 40, 120-130.	1.5	23
50	Genome editing of factor X in zebrafish reveals unexpected tolerance of severe defects in the common pathway. Blood, 2017, 130, 666-676.	0.6	22
51	3-OST-7 Regulates BMP-Dependent Cardiac Contraction. PLoS Biology, 2013, 11, e1001727.	2.6	19
52	The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Developmental Biology, 2014, 389, 182-191.	0.9	19
53	A convergent molecular network underlying autism and congenital heart disease. Cell Systems, 2021, 12, 1094-1107.e6.	2.9	19
54	Notch signaling regulates venous arterialization during zebrafish fin regeneration. Genes To Cells, 2015, 20, 427-438.	0.5	17

NEIL C CHI

#	Article	IF	CITATIONS
55	Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Developmental Biology, 2015, 404, 49-60.	0.9	14
56	Human Heart Rate. Journal of the American College of Cardiology, 2014, 63, 358-368.	1.2	11
57	Re-evaluating functional landscape of the cardiovascular system during development. Biology Open, 2017, 6, 1756-1770.	0.6	6
58	Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development (Cambridge), 2020, 147, .	1.2	6
59	Cardiac Morphogenesis: Crowding and Tension Resolved through Social Distancing. Developmental Cell, 2021, 56, 159-160.	3.1	Ο
60	Shear Stressâ€Activated Angiopoeitinâ€2 Modulates Endothelial Cell Repairs and Vasculogenesis via Wnt/β atenin Signaling Pathway. FASEB Journal, 2012, 26, 525.4.	0.2	0
61	Canonical Wnt/ βâ€catenin Signaling Pathway mediates Shear Stressâ€Activated Angiopoeitinâ€2 expression and vasculogenesis. FASEB Journal, 2013, 27, 526.6.	0.2	0
62	<i>Ankfn1</i> -mutant vestibular defects require loss of both ancestral and derived paralogs for penetrance in zebrafish. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0