Ethan B Secor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8293638/publications.pdf

Version: 2024-02-01

43 4,082 26 41 papers citations h-index g-index

43 43 43 6070 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Morphology and electrical properties of high-speed flexography-printed graphene. Mikrochimica Acta, 2022, 189, 123.	2.5	9
2	Modular motion control software development to support a versatile, low-cost aerosol jet platform for printed electronics. Additive Manufacturing, 2021, 40, 101932.	1.7	0
3	Light scattering measurements to support real-time monitoring and closed-loop control of aerosol jet printing. Additive Manufacturing, 2021, 44, 102028.	1.7	8
4	Printed microfluidic sweat sensing platform for cortisol and glucose detection. Lab on A Chip, 2021, 22, 156-169.	3.1	37
5	Realâ€Time Optical Process Monitoring for Structure and Property Control of Aerosol Jet Printed Functional Materials. Advanced Materials Technologies, 2020, 5, 2000781.	3.0	19
6	An Inkjet Printing Technique for Scalable Microfabrication of Graphene-Based Sensor Components. IEEE Access, 2020, 8, 79338-79346.	2.6	5
7	Investigating Porous Media for Relief Printing Using Microâ€Architected Materials. Advanced Engineering Materials, 2020, 22, 2000548.	1.6	2
8	Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8592-8603.	4.0	87
9	Understanding and mitigating process drift in aerosol jet printing. Flexible and Printed Electronics, 2020, 5, 015009.	1.5	16
10	Understanding effects of printhead geometry in aerosol jet printing. Flexible and Printed Electronics, 2020, 5, 035004.	1.5	19
11	Fully Inkjet-Printed, Mechanically Flexible MoS ₂ Nanosheet Photodetectors. ACS Applied Materials & Discrete Access (2019, 11, 5675-5681.	4.0	100
12	2D printing of graphene: a review. 2D Materials, 2019, 6, 042004.	2.0	49
13	Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS Applied Materials & Amp; Interfaces, 2019, 11, 9947-9954.	4.0	27
14	Direct Printing of Graphene Electrodes for High-Performance Organic Inverters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15988-15995.	4.0	14
15	Wiring up Liquid Metal: Stable and Robust Electrical Contacts Enabled by Printable Graphene Inks. Advanced Electronic Materials, 2018, 4, 1700483.	2.6	39
16	Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion. Journal of Physical Chemistry C, 2018, 122, 13745-13750.	1.5	20
17	Guided ink and process design for aerosol jet printing based on annular drying effects. Flexible and Printed Electronics, 2018, 3, 035007.	1.5	37
18	White Paper: Printable graphene inks stabilized with cellulosic polymers. MRS Bulletin, 2018, 43, 730-733.	1.7	8

#	Article	IF	Citations
19	Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thinâ€Film Transistors for Low Voltage Flexible Logic Circuits. Advanced Functional Materials, 2018, 28, 1802610.	7.8	37
20	Principles of aerosol jet printing. Flexible and Printed Electronics, 2018, 3, 035002.	1.5	179
21	Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic. Flexible and Printed Electronics, 2018, 3, 035004.	1.5	13
22	Transfer Printing of Sub-5 \hat{l} 4m Graphene Electrodes for Flexible Microsupercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22303-22310.	4.0	34
23	Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose. Chemistry of Materials, 2017, 29, 2332-2340.	3.2	134
24	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. Nano Letters, 2017, 17, 2539-2546.	4.5	81
25	An inkjet printed piezoresistive back-to-back graphene tactile sensor for endosurgical palpation applications. , 2017, , .		6
26	Scalable, Selfâ€Aligned Printing of Flexible Graphene Microâ€Supercapacitors. Advanced Energy Materials, 2017, 7, 1700285.	10.2	167
27	Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29418-29423.	4.0	59
28	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.	5.2	41
29	High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics. ACS Nano, 2017, 11, 7431-7439.	7. 3	116
30	Graphene Ink as a Conductive Templating Interlayer for Enhanced Charge Transport of C ₆₀ -Based Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29594-29599.	4.0	4
31	Highâ€Performance Solidâ€State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Advanced Energy Materials, 2016, 6, 1600909.	10.2	139
32	High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17428-17434.	4.0	62
33	Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Advanced Materials, 2015, 27, 6683-6688.	11.1	258
34	Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics. Journal of Physical Chemistry Letters, 2015, 6, 620-626.	2.1	122
35	Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano, 2015, 9, 4636-4648.	7.3	609
36	Allâ€Printed, Foldable Organic Thinâ€Film Transistors on Glassine Paper. Advanced Materials, 2015, 27, 7058-7064.	11.1	133

#	Article	IF	CITATIONS
37	Highâ€Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Advanced Materials, 2015, 27, 109-115.	11.1	430
38	Gravure Printing of Graphene for Largeâ€area Flexible Electronics. Advanced Materials, 2014, 26, 4533-4538.	11.1	298
39	Pulsed sonication for alumina coatings on high-capacity oxides: Performance in lithium-ion cells. Journal of Power Sources, 2014, 258, 46-53.	4.0	21
40	Inkjet Printing of High Conductivity, Flexible Graphene Patterns. Journal of Physical Chemistry Letters, 2013, 4, 1347-1351.	2.1	573
41	Double-slit interference effect in electron emission from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn><th>1.0 nml:msub:</th><th>• < /mml:mrov</th></mml:msub></mml:mrow></mml:msup></mml:math>	1.0 nml:msub:	• < /mml:mrov
42	Diffraction patterns in the ionization of the heteronuclear HeH <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mrow>2<mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> ion by attosecond x-ray radiation. Physical Review A. 2012. 86. Wulliphoton ionization of H <mml:math xmins:min="http://www.w3.org/1998/Math/Math/MathML</th"><th>1.0</th><th>12</th></mml:math>	1.0	12
43	display="inline"> <mml:matn xmins:mmi="http://www.w3.org/1998/Matn/Matn/Matn/Matn/Matn/Matn/Matn/Matn</th"><th>1.0</th><th>35</th></mml:matn>	1.0	35