List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological traits, niche-environment interaction and temporal changes in diatoms. Progress in Oceanography, 2022, 201, 102747.	1.5	10
2	Copepod swimming activity and turbulence intensity: study in the Agiturb turbulence generator system. European Physical Journal Plus, 2022, 137, 1.	1.2	1
3	Reactive scalars in incompressible turbulence with strongly out of equilibrium chemistry. Journal of Fluid Mechanics, 2022, 938, .	1.4	Ο
4	An algorithm for the direct estimation of the parameters of the SIR epidemic model from the I(t) dynamics. European Physical Journal Plus, 2022, 137, 57.	1.2	3
5	Description of turbulent dynamics in the interstellar medium: multifractal-microcanonical analysis. Astronomy and Astrophysics, 2021, 649, A33.	2.1	7
6	Impact of the Nocturnal Low-Level Jet and Orographic Waves on Turbulent Motions and Energy Fluxes in the Lower Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2021, 180, 527-542.	1.2	7
7	The Effects of Tidal Translation on Wave and Current Dynamics on a Barred Macrotidal Beach, Northern France. Journal of Marine Science and Engineering, 2021, 9, 909.	1.2	2
8	Scaling Analysis of the China France Oceanography Satellite Alongâ€Track Wind and Wave Data. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017119.	1.0	3
9	Scaling properties of the turbidity and streamflow time series at two different locations of an intra-Apennine stream: Case study. Journal of Hydrology, 2021, 603, 126943.	2.3	1
10	A quadratic Reynolds stress development for the turbulent Kolmogorov flow. Physics of Fluids, 2021, 33, .	1.6	2
11	Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions. Renewable Energy, 2020, 147, 1932-1940.	4.3	29
12	Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas. Ecological Informatics, 2020, 60, 101174.	2.3	14
13	Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments. Remote Sensing, 2020, 12, 648.	1.8	20
14	Phytoplankton distribution from Western to Central English Channel, revealed by automated flow cytometry during the summer-fall transition. Continental Shelf Research, 2020, 195, 104056.	0.9	5
15	Fluctuations and correlations of reactive scalars near chemical equilibrium in incompressible turbulence. Physical Review Fluids, 2020, 5, .	1.0	1
16	Climate Change and Risk Perceptions in Two French Coastal Communities. Journal of Coastal Research, 2020, 95, 875.	0.1	4
17	Small-Scale Prediction of Wind Energy in a Scale Invariant Framework. Springer Proceedings in Physics, 2019, , 297-303.	0.1	0
18	Nonlinear dynamics of the sea level time series in the eastern English Channel. Natural Hazards, 2018, 91, 267-285.	1.6	9

#	Article	IF	CITATIONS
19	Propelled microprobes in turbulence. Physical Review Fluids, 2018, 3, .	1.0	9
20	Investigation of Turbulence Behaviour in the Stable Boundary Layer Using Arbitrary-Order Hilbert Spectra. Boundary-Layer Meteorology, 2017, 163, 311-326.	1.2	22
21	Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production. Renewable Energy, 2017, 112, 314-327.	4.3	32
22	Turbulence from 1870 to 1920: The birth of a noun and of a concept. Comptes Rendus - Mecanique, 2017, 345, 620-626.	2.1	5
23	Rapid light curves (RLC) or non-sequential steady-state light curves (N-SSLC): which fluorescence-based light response curve methodology robustly characterizes phytoplankton photosynthetic activity and acclimation status?. Marine Biology, 2017, 164, 1.	0.7	12
24	Extremal-point density of scaling processes: From fractional Brownian motion to turbulence in one dimension. Physical Review E, 2017, 96, 012215.	0.8	2
25	Copepods encounter rates from a model of escape jump behaviour in turbulence. Journal of Plankton Research, 2017, 39, 878-890.	0.8	11
26	â~'5/3 Kolmogorov Turbulent Behaviour and Intermittent Sustainable Energies. , 2016, , .		1
27	Lagrangian model of copepod dynamics: Clustering by escape jumps in turbulence. Physical Review E, 2016, 93, 043117.	0.8	9
28	Multifractal anisotropic swimming: the optimal foraging behaviour of grouper larvae. Journal of Fish Biology, 2016, 88, 1835-1846.	0.7	0
29	Correlation between long-term marine temperature time series from the eastern and western English Channel: Scaling analysis using empirical mode decomposition. Comptes Rendus - Geoscience, 2016, 348, 343-349.	0.4	15
30	The Analyses of Turbulence Characteristics in the Atmospheric Surface Layer Using Arbitrary-Order Hilbert Spectra. Boundary-Layer Meteorology, 2016, 159, 391-406.	1.2	16
31	Study of Local Correlations of the Simultaneous wind Speed-irradiance Measurements Using the Time Dependent Intrinsic Correlation Method. Journal of Applied Nonlinear Dynamics, 2016, 5, 373-390.	0.1	6
32	Analysis and simulations of multifractal random walks. , 2015, , .		1
33	Taylor Law in Wind Energy Data. Resources, 2015, 4, 787-795.	1.6	6
34	Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions. PLoS ONE, 2015, 10, e0126975.	1.1	11
35	Intermittent particle dynamics in marine coastal waters. Nonlinear Processes in Geophysics, 2015, 22, 633-643.	0.6	3
36	Characterization of intermittency in zooplankton behaviour in turbulence. European Physical Journal E, 2015, 38, 108.	0.7	10

FRANçOIS G SCHMITT

0.3

7

#	Article	IF	CITATIONS
37	Multiscale Analysis of Wind Velocity, Power Output and Rotation of a Windmill. Energy Procedia, 2015, 76, 193-199.	1.8	12
38	Long-term high frequency phytoplankton dynamics, recorded from a coastal water autonomous measurement system in the eastern English Channel. Continental Shelf Research, 2015, 109, 210-221.	0.9	10
39	Phytoplankton photosynthetic activity dynamics in a temperate macrotidal ecosystem (the Strait of) Tj ETQq1 1 Marine Systems, 2015, 147, 61-75.	0.784314 0.9	4 rgBT /Overlo 6
40	Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Processes in Geophysics, 2014, 21, 379-392.	0.6	55
41	Continuous multifractal models with zero values: a continuous \$eta \$ -multifractal model. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P02008.	0.9	7
42	Pseudodiaptomus marinus Sato, 1913, a new invasive copepod in Lake Faro (Sicily): observations on the swimming behaviour and the sex-dependent responses to food. Zoological Studies, 2014, 53, .	0.3	24
43	Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition. Journal of Marine Systems, 2014, 130, 90-100.	0.9	79
44	High frequency variability of particle size distribution and its dependency on turbulence over the sea bottom during re-suspension processes. Continental Shelf Research, 2014, 77, 51-60.	0.9	21
45	Two-scale correlation and energy cascade in three-dimensional turbulent flows. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P05002.	0.9	2
46	Lagrangian cascade in three-dimensional homogeneous and isotropic turbulence. Journal of Fluid Mechanics, 2014, 741, .	1.4	8
47	The Scaling Properties of the Turbulent Wind Using Empirical Mode Decomposition and Arbitrary Order Hilbert Spectral Analysis. Research Topics in Wind Energy, 2014, , 43-49.	0.2	3
48	Short-term variability and control of phytoplankton photosynthetic activity in a macrotidal ecosystem (the Strait of Dover, eastern English Channel). Marine Biology, 2013, 160, 1661-1679.	0.7	7
49	Differences in feeding activity between females and males of <i>Temora longicornis</i> . Ecological Research, 2013, 28, 459-467.	0.7	6
50	Intermittency study of high frequency global solar radiation sequences under a tropical climate. Solar Energy, 2013, 98, 349-365.	2.9	38
51	Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 4106-4120.	1.2	47
52	Spatio-temporal variability of phytoplankton photosynthetic activity in a macrotidal ecosystem (the) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
53	Variability of turbulent quantities in the tidal bottom boundary layer: Case study in the eastern English Channel. Continental Shelf Research, 2013, 58, 21-31.	0.9	24

Fluctuations of satellite-derived chlorophyll concentrations and optical indices at the Southern Yellow Sea. Aquatic Ecosystem Health and Management, 2012, 15, 168-175.

#	Article	IF	CITATIONS
55	Spectral fluorometric characterization of Haptophyte dynamics using the FluoroProbe: an application in the eastern English Channel for monitoring Phaeocystis globosa. Journal of Plankton Research, 2012, 34, 136-151.	0.8	34
56	Modeling of atmospheric wind speed sequence using a lognormal continuous stochastic equation. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109, 1-8.	1.7	66
57	Effect of temperature on Temora longicornis swimming behaviour: illustration of seasonal effects in a temperate ecosystem. Aquatic Biology, 2012, 16, 149-162.	0.5	24
58	Statistical analysis of polychaete population density: dynamics of dominant species and scaling properties in relative abundance fluctuations. Nonlinear Processes in Geophysics, 2012, 19, 45-52.	0.6	4
59	Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the eastern English Channel. Ocean Science, 2012, 8, 1025-1040.	1.3	18
60	Turbulence effects on the feeding dynamics in European sea bass (Dicentrarchus labrax) larvae. Journal of Experimental Marine Biology and Ecology, 2012, 416-417, 61-67.	0.7	10
61	Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquatic Toxicology, 2011, 102, 228-231.	1.9	40
62	Scaling properties of pH fluctuations in coastal waters of the English Channel: pH as a turbulent active scalar. Nonlinear Processes in Geophysics, 2011, 18, 829-839.	0.6	12
63	Turbulence modeling based on non-Newtonian constitutive laws. Journal of Physics: Conference Series, 2011, 318, 042030.	0.3	Ο
64	Modeling turbulent-bounded flow using non-Newtonian viscometric functions. Journal of Turbulence, 2011, 12, N15.	0.5	3
65	Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence. Journal of Physics: Conference Series, 2011, 318, 042003.	0.3	3
66	Mating and mate choice in Pseudodiaptomus annandalei (Copepoda: Calanoida). Journal of Experimental Marine Biology and Ecology, 2011, 402, 1-11.	0.7	25
67	Anisotropy and shift of search behavior in Malabar grouper (Epinephelus malabaricus) larvae in response to prey availability. Hydrobiologia, 2011, 666, 215-222.	1.0	11
68	Effects of animal density, volume, and the use of 2D/3D recording on behavioral studies of copepods. Hydrobiologia, 2011, 666, 197-214.	1.0	26
69	Direct evidence of tidally oriented behavior of the copepod <i>Eurytemora affinis</i> in the Seine estuary. Ecological Research, 2011, 26, 773-780.	0.7	27
70	Mating behaviour of Pseudodiaptomus annandalei (Copepoda, Calanoida) at calm and hydrodynamically disturbed waters. Marine Biology, 2011, 158, 1085-1094.	0.7	17
71	A discrete log-normal process to sequentially generate a multifractal time series. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P12013.	0.9	6
72	Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: Comparison study with detrended fluctuation analysis and wavelet leaders. Physical Review E, 2011, 84, 016208.	0.8	84

#	Article	IF	CITATIONS
73	Multifractal analysis of the dollar–yuan and euro–yuan exchange rates before and after the reform of the peg. Quantitative Finance, 2011, 11, 505-513.	0.9	30
74	Regional patterns of continental shelf polychaete diversity: examples for the North Sea, English Channel, Irish Sea and Outer Bristol Channel areas. Italian Journal of Zoology, 2011, 78, 324-332.	0.6	8
75	STATISTICAL STUDY OF BIVALVE HIGH FREQUENCY MICROCLOSING BEHAVIOR: SCALING PROPERTIES AND SHOT NOISE ANALYSIS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 3565-3576.	0.7	13
76	Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). Journal of Plankton Research, 2011, 33, 1095-1103.	0.8	29
77	Scaling of maximum probability density functions of velocity and temperature increments in turbulent systems. Physics of Fluids, 2011, 23, .	1.6	7
78	Predation of Pseudodiaptomus annandalei (Copepoda: Calanoida) by the grouper fish fry Epinephelus coioides under different hydrodynamic conditions. Journal of Experimental Marine Biology and Ecology, 2010, 393, 17-22.	0.7	34
79	Use of Lagrangian statistics for the analysis of the scale separation hypothesis in turbulent channel flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3319-3327.	0.9	3
80	Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. Journal of Plankton Research, 2010, 32, 805-813.	0.8	39
81	How does salinity influence the swimming speed of the estuarine calanoid copepod Eurytemora affinis?: Reply. Journal of Plankton Research, 2010, 32, 1227-1229.	0.8	12
82	The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). Journal of Plankton Research, 2010, 32, 423-440.	0.8	27
83	Second-order structure function in fully developed turbulence. Physical Review E, 2010, 82, 026319.	0.8	55
84	Use of Lagrangian Statistics for the Direct Analysis of the Turbulent Constitutive Equation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 319-325.	0.2	0
85	Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. Journal of Hydrology, 2009, 373, 103-111.	2.3	118
86	Symbolic dynamics and entropies of copepod behaviour under non-turbulent and turbulent conditions. Journal of Marine Systems, 2009, 77, 388-396.	0.9	14
87	Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition. Journal of Marine Systems, 2009, 77, 473-481.	0.9	46
88	An individual-based model to study the reproduction of egg bearing copepods: Application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecological Modelling, 2009, 220, 1073-1089.	1.2	27
89	Autocorrelation function of velocity increments time series in fully developed turbulence. Europhysics Letters, 2009, 86, 40010.	0.7	11
00			0

90 EMPIRICAL MODE DECOMPOSITION OF DAILY RIVER FLUCTUATIONS., 2009, , .

0

#	Article	IF	CITATIONS
91	Statistical properties of turbidity, oxygen and pH fluctuations in the Seine river estuary (France). Physica A: Statistical Mechanics and Its Applications, 2008, 387, 6613-6623.	1.2	21
92	Nonlinear dynamics and intermittency in a long-term copepod time series. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 407-415.	1.7	9
93	Intermittent turbulence and copepod dynamics: Increase in encounter rates through preferential concentration. Journal of Marine Systems, 2008, 70, 263-272.	0.9	31
94	An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis. Europhysics Letters, 2008, 84, 40010.	0.7	123
95	Development and Environmental Conflicts in China. China Perspectives, 2008, 2008, 94-102.	0.4	5
96	Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1251-1264.	1.7	17
97	About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus - Mecanique, 2007, 335, 617-627.	2.1	255
98	On causal stochastic equations for log-stable multiplicative cascades. European Physical Journal B, 2007, 58, 149-158.	0.6	11
99	Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy. Hydrobiologia, 2007, 588, 59-68.	1.0	20
100	Analysis of Nonlinear Biophysical Time Series in Aquatic Environments: Scaling Properties and Empirical Mode Decomposition. , 2007, , 261-280.		1
101	Gusts in Intermittent Wind Turbulence and the Dynamics of their Recurrent Times. , 2007, , 73-79.		4
102	Lagrangian passive scalar intermittency in marine waters: theory and data analysis. , 2007, , 129-138.		0
103	Eulerian and Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2006, 61, 624-628.	0.7	2
104	Scaling of swimming sequences in copepod behavior: Data analysis and simulation. Physica A: Statistical Mechanics and Its Applications, 2006, 364, 287-296.	1.2	30
105	Linking Eulerian and Lagrangian structure functions' scaling exponents in turbulence. Physica A: Statistical Mechanics and Its Applications, 2006, 368, 377-386.	1.2	17
106	A 5-year study of the influence of the northeast and southwest monsoons on copepod assemblages in the boundary coastal waters between the East China Sea and the Taiwan Strait. Journal of Plankton Research, 2006, 28, 943-958.	0.8	81
107	Experimental analysis of cumulants scaling properties in fully developed intermittent turbulence. , 2006, , .		0
108	Explicit predictability and dispersion scaling exponents in fully developed turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 342, 448-458.	0.9	14

#	Article	IF	CITATIONS
109	Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence. European Physical Journal B, 2005, 48, 129-137.	0.6	12
110	Describing space-time patterns in aquatic ecology using IBMs and scaling and multi-scaling approaches. Nonlinear Analysis: Real World Applications, 2005, 6, 705-730.	0.9	16
111	Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part II. Applications. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 1325-1343.	0.6	16
112	Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part I. Theory. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 1308-1324.	0.6	22
113	Eulerian and Lagrangian properties of biophysical intermittency in the ocean. Geophysical Research Letters, 2004, 31, .	1.5	20
114	Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda:) Tj ETQq	0 0 0 rgB1	/Qverlock 10
115	A causal multifractal stochastic equation and its statistical properties. European Physical Journal B, 2003, 34, 85-98.	0.6	48
116	Direct investigation of the K-transport equation for a complex turbulent flow. Journal of Turbulence, 2003, 4, .	0.5	5
117	SCALING OF RETURN TIMES FOR A HIGH-RESOLUTION RAINFALL TIME SERIES. Fractals, 2002, 10, 285-290.	1.8	12
118	Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here?. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 1199-1215.	0.6	58
119	LDV Measurements of the Flow Field in the Nozzle Region of a Confined Double Annular Burner. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 228-236.	0.8	8
120	Multifractal random walk in copepod behavior. Physica A: Statistical Mechanics and Its Applications, 2001, 301, 375-396.	1.2	87
121	Experimental Study of the Constitutive Equation for an Axisymmetric Complex Turbulent Flow. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2000, 80, 815-825.	0.9	13
122	MULTIFRACTAL FLUCTUATIONS IN FINANCE. International Journal of Theoretical and Applied Finance, 2000, 03, 361-364.	0.2	55
123	Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. Journal of Plankton Research, 1999, 21, 877-822.	0.8	136
124	Copepod diffusion within multifractal phytoplankton fields. Journal of Marine Systems, 1998, 16, 69-83.	0.9	21
125	Multifractal analysis of phytoplankton biomass and temperature in the ocean. Geophysical Research Letters, 1996, 23, 3591-3594.	1.5	73
126	Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields. Nonlinear Processes in Geophysics, 1996, 3, 236-246.	0.6	60

#	Article	IF	CITATIONS
127	Multifractal temperature and flux of temperature variance in fully developed turbulence. Europhysics Letters, 1996, 34, 195-200.	0.7	65
128	Scaling invariance of crack surfaces. Journal of Geophysical Research, 1995, 100, 5953-5973.	3.3	222
129	Multifractal analysis of the Greenland Iceâ€Core Project climate data. Geophysical Research Letters, 1995, 22, 1689-1692.	1.5	79
130	Mulifractal phase transitions: the origin of self-organized criticality in earthquakes. Nonlinear Processes in Geophysics, 1994, 1, 191-197.	0.6	22
131	Empirical study of multifractal phase transitions in atmospheric turbulence. Nonlinear Processes in Geophysics, 1994, 1, 95-104.	0.6	49
132	ESTIMATION OF UNIVERSAL FOR ATMOSPHERIC TURBULENT MULTIFRACTAL INDICES VELOCITY FIELDS. Fractals, 1993, 01, 568-575.	1.8	28
133	Empirical determination of universal multifractal exponents in turbulent velocity fields. Physical Review Letters, 1992, 68, 305-308.	2.9	81