Yasushi Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829331/publications.pdf Version: 2024-02-01

Уленені Тенн

#	Article	IF	CITATIONS
1	Carbon dioxide as a carbon source in organic transformation: carbon–carbon bond forming reactions by transition-metal catalysts. Chemical Communications, 2012, 48, 9956.	2.2	498
2	Copperâ€Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes. Angewandte Chemie - International Edition, 2011, 50, 523-527.	7.2	313
3	Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide. Journal of the American Chemical Society, 2012, 134, 9106-9109.	6.6	308
4	Homogeneous Palladium Catalyst Suppressing Pd Black Formation in Air Oxidation of Alcohols. Journal of the American Chemical Society, 2004, 126, 6554-6555.	6.6	306
5	Copper-catalyzed borylative transformations of non-polar carbon–carbon unsaturated compounds employing borylcopper as an active catalyst species. Tetrahedron, 2015, 71, 2183-2197.	1.0	272
6	Highly Selective Copperâ€Catalyzed Hydroboration of Allenes and 1,3â€Dienes. Chemistry - A European Journal, 2013, 19, 7125-7132.	1.7	214
7	Copperâ€Catalyzed Highly Regio―and Stereoselective Directed Hydroboration of Unsymmetrical Internal Alkynes: Controlling Regioselectivity by Choice of Catalytic Species. Chemistry - A European Journal, 2012, 18, 4179-4184.	1.7	174
8	Ruthenium complex catalyzed intermolecular hydroacylation and transhydroformylation of olefins with aldehydes. Journal of Organic Chemistry, 1990, 55, 1286-1291.	1.7	160
9	Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species. Catalysis Science and Technology, 2014, 4, 1699.	2.1	148
10	Copperâ€Catalyzed Silacarboxylation of Internal Alkynes by Employing Carbon Dioxide and Silylboranes. Angewandte Chemie - International Edition, 2012, 51, 11487-11490.	7.2	141
11	Copperâ€Catalyzed Highly Selective Semihydrogenation of Nonâ€Polar Carbonâ€Carbon Multiple Bonds using a Silane and an Alcohol. Advanced Synthesis and Catalysis, 2012, 354, 1542-1550.	2.1	137
12	Copper-Catalyzed Regiodivergent Silacarboxylation of Allenes with Carbon Dioxide and a Silylborane. Journal of the American Chemical Society, 2014, 136, 17706-17709.	6.6	128
13	1,4-Carbosilylation of 1,3-Dienes via Palladium Catalyzed Three-Component Coupling Reaction. Journal of the American Chemical Society, 1995, 117, 9814-9821.	6.6	118
14	Palladium-Catalyzed Intermolecular Addition of Formamides to Alkynes. Journal of the American Chemical Society, 2010, 132, 2094-2098.	6.6	109
15	Palladium-catalyzed esterification of aryl halides using aryl formates without the use of external carbon monoxide. Chemical Communications, 2012, 48, 8012.	2.2	102
16	Boraformylation and Silaformylation of Allenes. Angewandte Chemie - International Edition, 2017, 56, 1539-1543.	7.2	102
17	Phosphines Having a 2,3,4,5-Tetraphenylphenyl Moiety:Â Effective Ligands in Palladium-Catalyzed Transformations of Aryl Chlorides. Organometallics, 2006, 25, 4665-4669.	1.1	101
18	Copperâ€Catalyzed Borylative Allyl–Allyl Coupling Reaction. Angewandte Chemie - International Edition, 2014, 53, 9007-9011.	7.2	99

#	Article	IF	CITATIONS
19	Iridium-Catalyzed Addition of Acid Chlorides to Terminal Alkynes. Journal of the American Chemical Society, 2009, 131, 6668-6669.	6.6	97
20	Nickel-Catalyzed Double Carboxylation of Alkynes Employing Carbon Dioxide. Organic Letters, 2014, 16, 4960-4963.	2.4	96
21	Kinetic Resolution of Axially Chiral 2,2â€~-Dihydroxy-1,1â€~-biaryls by Palladium-Catalyzed Alcoholysis. Journal of the American Chemical Society, 2005, 127, 10474-10475.	6.6	95
22	Palladiumâ€Catalyzed Hydroesterification of Alkynes Employing Aryl Formates without the Use of External Carbon Monoxide. Advanced Synthesis and Catalysis, 2011, 353, 475-482.	2.1	95
23	Copper atalyzed Borylation of αâ€Alkoxy Allenes with Bis(pinacolato)diboron: Efficient Synthesis of 2â€Boryl 1,3â€Butadienes. Angewandte Chemie - International Edition, 2013, 52, 12400-12403.	7.2	94
24	Iridium-Catalyzed Annulation of <i>N</i> -Arylcarbamoyl Chlorides with Internal Alkynes. Journal of the American Chemical Society, 2010, 132, 9602-9603.	6.6	92
25	Carboxyzincation Employing Carbon Dioxide and Zinc Powder: Cobalt-Catalyzed Multicomponent Coupling Reactions with Alkynes. Journal of the American Chemical Society, 2016, 138, 5547-5550.	6.6	90
26	Copperâ€Catalyzed Hydrosilylation with a Bowlâ€Shaped Phosphane Ligand: Preferential Reduction of a Bulky Ketone in the Presence of an Aldehyde. Angewandte Chemie - International Edition, 2010, 49, 1472-1476.	7.2	89
27	A Bowl-Shaped Phosphine as a Ligand in Palladium-Catalyzed Suzukiâ^'Miyaura Coupling of Aryl Chlorides:Â Effect of the Depth of the Bowl. Organic Letters, 2007, 9, 89-92.	2.4	88
28	Triarylphosphanes with Dendritically Arranged Tetraethylene Glycol Moieties at the Periphery: An Efficient Ligand for the Palladium atalyzed Suzuki–Miyaura Coupling Reaction. Angewandte Chemie - International Edition, 2008, 47, 8310-8314.	7.2	85
29	Cobalt- and Nickel-Catalyzed Carboxylation of Alkenyl and Sterically Hindered Aryl Triflates Utilizing CO ₂ . Journal of Organic Chemistry, 2015, 80, 11618-11623.	1.7	82
30	A Bowl-Shaped Phosphine as a Ligand in Rhodium-Catalyzed Hydrosilylation:Â Rate Enhancement by a Mono(phosphine) Rhodium Species. Organometallics, 2005, 24, 3468-3475.	1.1	78
31	Homogeneous Nanosize Palladium Catalysts. Inorganic Chemistry, 2007, 46, 1895-1902.	1.9	78
32	Synthesis of One-Dimensional Metal-Containing Insulated Molecular Wire with Versatile Properties Directed toward Molecular Electronics Materials. Journal of the American Chemical Society, 2014, 136, 1742-1745.	6.6	77
33	Ruthenium complex catalyzed intermolecular hydroacylation of olefins. Tetrahedron Letters, 1987, 28, 6229-6230.	0.7	76
34	Palladium-catalyzed decarbonylative coupling of acid chlorides, organodisilanes, and 1,3-dienes. Journal of the American Chemical Society, 1993, 115, 10414-10415.	6.6	74
35	Cobalt-catalyzed carboxylation of propargyl acetates with carbon dioxide. Chemical Communications, 2014, 50, 13052-13055.	2.2	72
36	A Triarylphosphine Ligand Bearing Dodeca(ethylene glycol) Chains: Enhanced Efficiency in the Palladium-Catalyzed Suzukiâ^'Miyaura Coupling Reaction. Organic Letters, 2009, 11, 2121-2124.	2.4	70

YASUSHI TSUJI

#	Article	IF	CITATIONS
37	Palladium Complex Catalyzed Acylation of Allylic Esters with Acylsilanes. Journal of the American Chemical Society, 2001, 123, 10489-10493.	6.6	69
38	Rate Enhancement with a Bowl-Shaped Phosphane in the Rhodium-Catalyzed Hydrosilylation of Ketones. Angewandte Chemie - International Edition, 2003, 42, 1287-1289.	7.2	69
39	Dendrimer N-heterocyclic carbene complexes with rhodium(i) at the core. Chemical Communications, 2005, , 4526.	2.2	64
40	Copperâ€Catalyzed Transformations Using Cu–H, Cu–B, and Cu–Si as Active Catalyst Species. Chemical Record, 2016, 16, 2294-2313.	2.9	64
41	N-Heterocyclic carbeneligands bearing hydrophilic and/or hydrophobic chains: Rh(<scp>i</scp>) and Pd(<scp>ii</scp>) complexes and their catalytic activity. Dalton Transactions, 2008, , 379-385.	1.6	63
42	Copper-catalyzed C–C bond-forming transformation of CO ₂ to alcohol oxidation level: selective synthesis of homoallylic alcohols from allenes, CO ₂ , and hydrosilanes. Chemical Communications, 2015, 51, 13020-13023.	2.2	63
43	Iridium-Catalyzed Addition of Aroyl Chlorides and Aliphatic Acid Chlorides to Terminal Alkynes. Journal of the American Chemical Society, 2012, 134, 1268-1274.	6.6	62
44	The crucial role of a Ni(i) intermediate in Ni-catalyzed carboxylation of aryl chloride with CO2: a theoretical study. Chemical Communications, 2013, 49, 10715.	2.2	62
45	Enhancement of Phosphorescence and Unimolecular Behavior in the Solid State by Perfect Insulation of Platinum–Acetylide Polymers. Journal of the American Chemical Society, 2014, 136, 14714-14717.	6.6	58
46	Cu-Catalyzed Borylative and Silylative Transformations of Allenes: Use of β-Functionalized Allyl Copper Intermediates in Organic Synthesis. Synthesis, 2018, 50, 1737-1749.	1.2	57
47	Ru3(CO)12-(CH3)3NO·2H2O-catalyzed hydroesterification of olefins with alkyl formates. Journal of Molecular Catalysis, 1989, 50, 31-38.	1.2	46
48	Copperâ€Catalyzed Boraâ€Acylation and Boraâ€Alkoxyoxalylation of Allenes. Advanced Synthesis and Catalysis, 2018, 360, 2621-2625.	2.1	43
49	Palladium-catalyzed oxidation of cyclohexanones to conjugated enones using molecular oxygen. Tetrahedron Letters, 2007, 48, 6860-6862.	0.7	42
50	A Typical Metalâ€lonâ€Responsive Colorâ€Tunable Emitting Insulated Ï€â€Conjugated Polymer Film. Angewandte Chemie - International Edition, 2016, 55, 13427-13431.	7.2	42
51	Steric Effect of Carboxylate Ligands on Pdâ€Catalyzed Intramolecular C(sp ²)–H and C(sp ³)–H Arylation Reactions. Angewandte Chemie - International Edition, 2018, 57, 10314-10317.	7.2	40
52	Copper-catalyzed oxidative cleavage of carbon–carbon double bond of enol ethers with molecular oxygen. Journal of Organometallic Chemistry, 2005, 690, 5378-5382.	0.8	36
53	Dendrimerâ^'Phosphine Complexes with Platinum(0) at the Core. Organometallics, 2001, 20, 5342-5350.	1.1	35
54	Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein Journal of Organic Chemistry, 2018, 14, 2435-2460.	1.3	33

#	Article	IF	CITATIONS
55	Carboxylation Reactions Using Carbon Dioxide as the C1 Source via Catalytically Generated Allyl Metal Intermediates. Frontiers in Chemistry, 2019, 7, 430.	1.8	33
56	Boraformylation and Silaformylation of Allenes. Angewandte Chemie, 2017, 129, 1561-1565.	1.6	29
57	Copper-catalyzed Silylative Allylation of Ketones and Aldehydes Employing Allenes and Silylboranes. Chemistry Letters, 2015, 44, 271-273.	0.7	28
58	Synthesis of poly(ethylene oxide-b-methyl methacrylate). Journal of Polymer Science, Polymer Letters Edition, 1976, 14, 675-678.	0.4	27
59	Rhodium(iii) complexes with a bidentate N-heterocyclic carbene ligand bearing flexible dendritic frameworks. Dalton Transactions, 2007, , 1567.	1.6	27
60	Palladium atalyzed Reduction of Carboxylic Acids to Aldehydes with Hydrosilanes in the Presence of Pivalic Anhydride. Advanced Synthesis and Catalysis, 2013, 355, 3420-3424.	2.1	26
61	Palladium-Catalyzed Formal Hydroacylation of Allenes Employing Acid Chlorides and Hydrosilanes. Organic Letters, 2013, 15, 2286-2289.	2.4	25
62	Insulated conjugated bimetallopolymer with sigmoidal response by dual self-controlling system as a biomimetic material. Nature Communications, 2020, 11, 408.	5.8	23
63	MALDI TOF Mass Study on Oligomerization of Pd(OAc)2(L)2(L = Pyridine Derivatives):  Relevance to Pd Black Formation in Pd-Catalyzed Air Oxidation of Alcohols. Organic Letters, 2005, 7, 4677-4679.	2.4	22
64	Ruthenium-catalyzed ring-closing metathesis accelerated by long-range steric effect. Chemical Communications, 2011, 47, 9699.	2.2	22
65	Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length. Chemistry - A European Journal, 2016, 22, 6624-6630.	1.7	22
66	Metal complexes-catalyzed hydrolysis and alcoholysis of organic substrates and their application to kinetic resolution. Journal of Organometallic Chemistry, 2007, 692, 472-480.	0.8	19
67	Rate Enhancement with a Bowl-Shaped Phosphane in the Rhodium-Catalyzed Hydrosilylation of Ketones. Angewandte Chemie, 2003, 115, 1325-1327.	1.6	18
68	Recent Development of Homogeneous Transition Metal Catalysts with Nanosize Ligands. Chemistry Letters, 2007, 36, 1296-1301.	0.7	18
69	Palladium-catalyzed formal hydroacylation of allenes employing carboxylic anhydrides and hydrosilanes. Tetrahedron, 2015, 71, 4570-4574.	1.0	18
70	Copper-catalyzed hydroallylation of allenes employing hydrosilanes and allyl chlorides. Chemical Communications, 2017, 53, 7898-7900.	2.2	17
71	Synthesis of an organic-soluble π-conjugated [3]rotaxane via rotation of glucopyranose units in permethylated β-cyclodextrin. Beilstein Journal of Organic Chemistry, 2014, 10, 2800-2808. 	1.3	16
72	Steric effect of carboxylic acid ligands on Pd-catalyzed C–H activation reactions. Catalysis Communications, 2016, 84, 71-74.	1.6	16

Yasushi Tsuji

#	Article	IF	CITATIONS
73	Synthesis of Insulated Pt–Alkynyl Complex Polymer. Chemistry Letters, 2012, 41, 652-653.	0.7	14
74	N-Heterocyclic carbene ligands bearing poly(ethylene glycol) chains: effect of the chain length on palladium-catalyzed coupling reactions employing aryl chlorides. Chemical Communications, 2015, 51, 17382-17385.	2.2	14
75	Programmed Synthesis of Molecular Wires with Fixed Insulation and Defined Length Based on Oligo(phenylene ethynylene) and Permethylated αâ€Cyclodextrins. Chemistry - A European Journal, 2017, 23, 15073-15079.	1.7	14
76	Kinetic stabilization of a Ni(<scp>ii</scp>) bis(dithiobenzoate)-type complex achieved using three-dimensional insulation by a [1]rotaxane structure. Chemical Communications, 2018, 54, 2487-2490.	2.2	13
77	Kinetic resolution of phosphoryl and sulfonyl esters of 1,1′-bi-2-naphthol via Pd-catalyzed alcoholysis of their vinyl ethers. Tetrahedron: Asymmetry, 2008, 19, 1593-1599.	1.8	12
78	Palladium-Catalyzed Reduction of Acid Chlorides to Aldehydes with Hydrosilanes. Synlett, 2012, 23, 2389-2392.	1.0	12
79	Pd-Catalyzed intermolecular C–H bond arylation reactions: effect of bulkiness of carboxylate ligands. Chemical Communications, 2020, 56, 3843-3846.	2.2	12
80	Effect of Mechanical Strain on Electric Conductance of Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 19452-19457.	1.5	11
81	Cu-Catalyzed three-component coupling reactions using nitriles, 1,3-dienes and silylboranes. Chemical Communications, 2020, 56, 4648-4651.	2.2	11
82	Palladium-catalyzed formal arylacylation of allenes employing acid chlorides and arylboronic acids. Chemical Communications, 2014, 50, 8476-8479.	2.2	10
83	Transition Metal-catalyzed Fixation of Carbon Dioxide <i>via</i> Carbon–carbon Bond Formation. Journal of the Japan Petroleum Institute, 2016, 59, 84-92.	0.4	10
84	Regio- and Stereoselective Synthesis of Triarylalkene-Capped Rotaxanes via Palladium-Catalyzed Tandem Sonogashira/Hydroaryl Reaction of Terminal Alkynes. Journal of Organic Chemistry, 2017, 82, 5449-5455.	1.7	10
85	Hetero Faceâ€ŧoâ€Face Porphyrin Array with Cooperative Effects of Coordination and Host–Guest Complexation. Chemistry - an Asian Journal, 2017, 12, 1900-1904.	1.7	10
86	Zinc-Catalyzed Synthesis of Acylsilanes Using Carboxylic Acids and a Silylborane in the Presence of Pivalic Anhydride. Organic Letters, 2019, 21, 10130-10133.	2.4	10
87	Complementary Color Tuning by HCl via Phosphorescence-to-Fluorescence Conversion on Insulated Metallopolymer Film and Its Light-Induced Acceleration. Polymers, 2020, 12, 244.	2.0	10
88	Characterization of Living Anion Chain End of Oligomeric 2-Phenyl-1,3-butadienyllithium. Polymer Journal, 1979, 11, 937-945.	1.3	9
89	Molecular Wiring Method Based on Polymerization or Copolymerization of an Insulated π-Conjugated Monomer. Bulletin of the Chemical Society of Japan, 2014, 87, 871-873.	2.0	9
90	Characterization of Living Anion Chain End of Oligomeric 1-Phenyl-1,3-butadienyllithium. Polymer Journal, 1979, 11, 651-660.	1.3	8

#	Article	IF	CITATIONS
91	New synthetic methods of π-conjugated inclusion complexes with high conductivity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 165-175.	0.9	8
92	Iron oxide catalyzed reduction of acid chlorides to aldehydes with hydrosilanes. Catalysis Communications, 2014, 50, 25-28.	1.6	8
93	Synthesis and Redox Response of Insulated Molecular Wire Elongated through Iron–Terpyridine Coordination Bonds. Chemistry Letters, 2014, 43, 1289-1291.	0.7	8
94	Encapsulation by Cyclic Porphyrin Dimers Using Various Interaction Modes. Chemistry Letters, 2014, 43, 1374-1376.	0.7	8
95	Enhancement of Carrier Mobility through Deformation Potential in Metal-Containing Insulated Molecular Wires. Journal of Physical Chemistry C, 2016, 120, 26637-26644.	1.5	8
96	Electrochromic and unique chiroptical properties of helically deformed tetraarylquinodimethanes generated from less-hindered dicationic precursors upon reduction. Pure and Applied Chemistry, 2014, 86, 507-516.	0.9	7
97	Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide Catalyzed by MgCl ₂ . Chemistry Letters, 2017, 46, 968-969.	0.7	7
98	Steric Effect of Carboxylate Ligands on Pd atalyzed Intramolecular C(sp ²)–H and C(sp ³)–H Arylation Reactions. Angewandte Chemie, 2018, 130, 10471-10474.	1.6	7
99	Transition-metal Catalyzed Synthesis of Carbonyl Compounds Using Formates or Formamides as Carbonyl Sources. Journal of the Japan Petroleum Institute, 2018, 61, 1-9.	0.4	6
100	Copper atalyzed [4+2] Cycloaddition Using <i>N</i> â€(2â€Pyridyl)ketimines and Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 3245-3248.	2.1	6
101	Two-step template method for synthesis of axis-length-controlled porphyrin-containing hollow structures. Chemical Communications, 2019, 55, 6755-6758.	2.2	5
102	Synthesis of Tetrasilatetrathia[8]circulenes through C–I and C–H Silylation. Synthesis, 2021, 53, 2995-3000.	1.2	5
103	Synthesis and characterization of ruthenium(II) complexes with dendritic N-heterocyclic carbene ligands. Inorganica Chimica Acta, 2014, 409, 174-178.	1.2	4
104	Novel catalytic reactions using ruthenium and platinum complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1988, 46, 789-800.	0.0	4
105	Cobaltâ€Catalyzed Reductive Coupling of Alkynes and Acrylates Bearing a Leaving Group: Construction of Cyclobutene Rings. Asian Journal of Organic Chemistry, 2018, 7, 2456-2458.	1.3	3
106	Synthesis of Molecular Wires Strapped by π-Conjugated Side Chains: Integration of Dehydrobenzo[20]annulene Units. Journal of Organic Chemistry, 2015, 80, 8874-8880.	1.7	2
107	Cu-catalyzed Transformations of Allenes: Use of in-situ Generated Allyl Copper Intermediates in Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 336-345.	0.0	2
108	Palladium(II) complexes bearing a salicylaldiminato ligand with a hydroxyl group: Synthesis, structures, deprotonation, and catalysis. Inorganica Chimica Acta, 2011, 368, 237-241.	1.2	1

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Carboxylic Acids Bearing Poly(ethylene glycol) Chains. Synlett, 2018, 29, 556-559.	1.0	1
110	Palladium-Catalyzed Synthesis of Fluorenes by Intramolecular C(sp2)–H Activation at Room Temperature. Synlett, 2020, 31, 805-808.	1.0	1
111	Titelbild: A Typical Metalâ€lonâ€Responsive Colorâ€Tunable Emitting Insulated Ï€â€Conjugated Polymer Film (Angew. Chem. 43/2016). Angewandte Chemie, 2016, 128, 13547-13547.	1.6	0
112	Rücktitelbild: Boraformylation and Silaformylation of Allenes (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1700-1700.	1.6	0
113	Thieme Chemistry Journals Awardees – Where Are They Now? Synthesis of a Dinuclear Copper NHC Complex Bearing a Rigid π-Conjugated Cyclic Framework. Synlett, 2017, 28, 1775-1779.	1.0	0
114	Pyridines Bearing Poly(ethylene glycol) Chains: Synthesis and Use as Ligands. Asian Journal of Organic Chemistry, 2020, 9, 761-764.	1.3	0