Graeme W Watson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/829279/graeme-w-watson-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

218 15,367 64 119 h-index g-index citations papers 6.76 16,599 232 5.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
218	Defect chemistry of LaGaO3 doped with divalent cations. <i>Solid State Ionics</i> , 2022 , 374, 115828	3.3	O
217	Modulating Structural and Electronic Properties of Rare Archimedean and Johnson-Type Mn Cages. <i>Inorganic Chemistry</i> , 2021 , 60, 8388-8393	5.1	О
216	J2suscep: Calculation of magnetic exchange coupling and temperature dependence of magnetic susceptibility. <i>Journal of Open Source Software</i> , 2021 , 6, 2838	5.2	1
215	A computational study of the electrochemical cyanide reduction for ambient ammonia production on a nickel cathode. <i>Catalysis Science and Technology</i> , 2021 , 11, 5633-5640	5.5	
214	Altering the nature of coupling by changing the oxidation state in a {Mn} cage. <i>Dalton Transactions</i> , 2020 , 49, 8086-8095	4.3	2
213	A cubane-type manganese complex with H2O oxidation capabilities. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4464-4468	5.8	5
212	Aggregation induced emission (AIE) active 4-amino-1,8-naphthalimide-Trger's base for the selective sensing of chemical explosives in competitive aqueous media. <i>Chemical Communications</i> , 2020 , 56, 2562-2565	5.8	32
211	Computational modelling of solid oxide fuel cells. Current Opinion in Electrochemistry, 2020, 21, 14-21	7.2	7
210	Computationally Driven Discovery of Layered Quinary Oxychalcogenides: Potential -Type Transparent Conductors?. <i>Matter</i> , 2020 , 3, 759-781	12.7	5
209	Hyper-crosslinked 4-amino-1,8-naphthalimide Trger base containing pyridinium covalent organic polymer (COP) for discriminative fluorescent sensing of chemical explosives. <i>Supramolecular Chemistry</i> , 2020 , 32, 508-517	1.8	2
208	The structure and electronic structure of tin oxides 2020 , 11-39		2
207	"Turn-on" fluorescence sensing of volatile organic compounds using a 4-amino-1,8-naphthalimide Trger's base functionalised triazine organic polymer. <i>Chemical Communications</i> , 2019 , 55, 12140-12143	5.8	22
206	Quasiparticle Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CHNHGeI for Photovoltaic Applications. <i>ACS Omega</i> , 2019 , 4, 5661-5669	3.9	15
205	Layered CeSO and LiCeSO Oxide Chalcogenides Obtained via Topotactic Oxidative and Reductive Transformations. <i>Inorganic Chemistry</i> , 2019 , 58, 3838-3850	5.1	3
204	Flexible Metal-Organic Frameworks for Light-Switchable CO Sorption Using an Auxiliary Ligand Strategy. <i>Inorganic Chemistry</i> , 2019 , 58, 9766-9772	5.1	5
203	Synthesis, structural characterisation and antiproliferative activity of a new fluorescent 4-amino-1,8-naphthalimide Trger's base-Ru(ii)-curcumin organometallic conjugate. <i>Chemical Communications</i> , 2018 , 54, 4120-4123	5.8	29
202	Defects in orthorhombic LaMnO - ionic versus electronic compensation. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 19257-19267	3.6	2

(2014-2017)

201	Photocatalysis: Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study (Adv. Funct. Mater. 18/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
200	Modelling the electronic structure of orthorhombic LaMnO3. <i>Solid State Ionics</i> , 2017 , 299, 13-17	3.3	17
199	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. <i>Advanced Functional Materials</i> , 2017 , 27, 1605413	15.6	76
198	Modelling oxygen defects in orthorhombic LaMnO and its low index surfaces. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 24636-24646	3.6	16
197	The importance of polarizability in the modeling of ionic diffusion in ceria. <i>IOP Conference Series:</i> Materials Science and Engineering, 2017 , 169, 012002	0.4	О
196	Valence band modification of Cr2O3 by Ni-doping: creating a high figure of merit p-type TCO. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12610-12618	7.1	24
195	Reversible adsorption and storage of secondary explosives from water using a Trger's base-functionalised polymer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25014-25024	13	22
194	Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways. <i>Chemistry of Materials</i> , 2016 , 28, 4706-4713	9.6	26
193	Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 175801	1.8	10
192	Assessing the potential of Mg-doped CrDDs a novel p-type transparent conducting oxide. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 125501	1.8	16
191	Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy. <i>Chemical Physics Letters</i> , 2016 , 647, 59-63	2.5	4
190	Correlating Lithium Hydroxyl Accumulation with Capacity Retention in V2O5 Aerogel Cathodes. <i>ACS Applied Materials & District Action Services</i> (1988) 11532-8	9.5	19
189	Structure and Reducibility of CeO2 Doped with Trivalent Cations. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23430-23440	3.8	49
188	Electronic and surface properties of Ga-doped In2O3 ceramics. <i>Applied Surface Science</i> , 2015 , 349, 970-	9827	25
187	The electronic structure of sulvanite structured semiconductors Cu3MCh4 (M = V, Nb, Ta; Ch = S, Se, Te): prospects for optoelectronic applications. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12236-12244	7.1	33
186	Strain effects on the ionic conductivity of Y-doped ceria: A simulation study. <i>Journal of Electroceramics</i> , 2014 , 32, 28-36	1.5	28
185	Solution Processing Route to Multifunctional Titania Thin Films: Highly Conductive and Photcatalytically Active Nb:TiO2. <i>Advanced Functional Materials</i> , 2014 , 24, 5075-5085	15.6	81
184	Valence States in CeVO4 and Ce0.5Bi0.5VO4 Probed by Density Functional Theory Calculations and X-ray Photoemission Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 25330-25339	3.8	13

183	Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 3606-3610	35.4	82
182	Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3429-3438	7.1	45
181	The electronic structure of silver orthophosphate: experiment and theory. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6092-6099	13	18
180	The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications. <i>Journal of Solid State Chemistry</i> , 2014 , 213, 116-125	3.3	68
179	Occupation matrix control of d- and f-electron localisations using DFT + U. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21016-31	3.6	105
178	Ceria co-doping: synergistic or average effect?. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8320-31	3.6	60
177	The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. <i>Chemical Physics Letters</i> , 2014 , 608, 239-243	2.5	25
176	Valence-band density of states and surface electron accumulation in epitaxial SnO2 films. <i>Physical Review B</i> , 2014 , 90,	3.3	50
175	Electronic Structures of Antimony Oxides. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14759-14769	3.8	62
174	Band alignment of rutile and anatase TiO□ <i>Nature Materials</i> , 2013 , 12, 798-801	27	1656
174 173	Band alignment of rutile and anatase TiOŪNature Materials, 2013, 12, 798-801 Computational testing of trivalent dopants in CeO2 for improved high-Edielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098	27 7.1	1656 30
	Computational testing of trivalent dopants in CeO2 for improved high-ldielectric behaviour.	•	
173	Computational testing of trivalent dopants in CeO2 for improved high-Idielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098	7.1	30
173 172	Computational testing of trivalent dopants in CeO2 for improved high-ldielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098 Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C, 2013, 1, 8194 Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. Modelling and	7.1	30 59
173 172 171	Computational testing of trivalent dopants in CeO2 for improved high-l'dielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098 Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C, 2013, 1, 8194 Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074003 Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional	7.1 7.1	30 59 2
173 172 171 170	Computational testing of trivalent dopants in CeO2 for improved high-Idielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098 Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C, 2013, 1, 8194 Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074003 Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory. Chemistry of Materials, 2013, 25, 3114-3123 Chemical Expansion in SOFC Materials: Ramifications, Origins, and Mitigation. ECS Transactions,	7.1 7.1 2	30 59 2
173 172 171 170 169	Computational testing of trivalent dopants in CeO2 for improved high-tidielectric behaviour. Journal of Materials Chemistry C, 2013, 1, 1093-1098 Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C, 2013, 1, 8194 Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074003 Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory. Chemistry of Materials, 2013, 25, 3114-3123 Chemical Expansion in SOFC Materials: Ramifications, Origins, and Mitigation. ECS Transactions, 2013, 57, 643-648 Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. Physical	7.1 7.1 2 9.6	30 59 2 107 2

(2011-2013)

165	Reducing the chemical expansion coefficient in ceria by addition of zirconia. <i>Energy and Environmental Science</i> , 2013 , 6, 1142	35.4	40
164	PbO2: from semi-metal to transparent conducting oxide by defect chemistry control. <i>Chemical Communications</i> , 2013 , 49, 448-50	5.8	23
163	The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 165501	1.8	7
162	Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO3(001) by Dip Coating. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15221-15228	3.8	9
161	Elucidating the Nature of Pseudo JahnTeller Distortions in LixMnPO4: Combining Density Functional Theory with Soft and Hard X-ray Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10383-10396	3.8	61
160	Tracking DNA Excited States by Picosecond-Time-Resolved Infrared Spectroscopy: Signature Band for a Charge-Transfer Excited State in Stacked AdenineII hymine Systems. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2739-2744	6.4	68
159	Energy-band alignment of II-VI/Zn3P2 heterojunctions from x-ray photoemission spectroscopy. <i>Journal of Applied Physics</i> , 2013 , 113, 203705	2.5	23
158	Cooperative Mechanism for the Diffusion of Li+ Ions in LiMgSO4F. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18618-18625	3.8	40
157	The synthesis and characterisation of novel ferrocenyl polyphenylenes. <i>Dalton Transactions</i> , 2012 , 41, 8850-60	4.3	28
156	Oxygen Vacancy Ordering and the Conductivity Maximum in Y2O3-Doped CeO2. <i>Chemistry of Materials</i> , 2012 , 24, 222-229	9.6	91
155	Scanlon and Watson Reply:. <i>Physical Review Letters</i> , 2012 , 108,	7.4	1
154	Analysis of Intrinsic Defects in CeO2 Using a Koopmans-Like GGA+U Approach. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2443-2452	3.8	125
153	On the possibility of p-type SnO2. Journal of Materials Chemistry, 2012, 22, 25236		134
152	Computational study of the proton affinity and basicity of structurally diverse 4-adrenoceptor ligands. <i>Journal of Physical Organic Chemistry</i> , 2012 , 25, 351-360	2.1	4
151	Geometry, Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials?. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7334-7340	3.8	87
150	Charge localization increases chemical expansion in cerium-based oxides. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 12070-4	3.6	61
149	Electronic structures of silver oxides. <i>Physical Review B</i> , 2011 , 84,	3.3	51
148	Understanding the p-type defect chemistry of CuCrO2. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3655		163

147	Sources of conductivity and doping limits in CdO from hybrid density functional theory. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15065-72	16.4	149
146	A dipole polarizable potential for reduced and doped CeO(2) obtained from first principles. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 255402	1.8	28
145	Band gap anomalies of the ZnM2(III)O4 (M(III)=Co, Rh, Ir) spinels. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 9667-75	3.6	60
144	Uncovering the complex behavior of hydrogen in Cu2O. <i>Physical Review Letters</i> , 2011 , 106, 186403	7.4	46
143	Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. <i>Chemical Society Reviews</i> , 2011 , 40, 4455-63	58.5	456
142	Role of Lithium Ordering in the LixTiO2 Anatase -> Titanate Phase Transition. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1657-1661	6.4	38
141	Tin Monoxide: Structural Prediction from First Principles Calculations with van der Waals Corrections. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19916-19924	3.8	79
140	Comparison of the defective pyrochlore and ilmenite polymorphs of AgSbO3 using GGA and hybrid DFT. <i>Physical Review B</i> , 2011 , 83,	3.3	23
139	The origin of the enhanced oxygen storage capacity of Ce(1-x)(Pd/Pt)(x)O2. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4279-84	3.6	74
138	Role of Lattice Distortions in the Oxygen Storage Capacity of Divalently Doped CeO2. <i>Chemistry of Materials</i> , 2011 , 23, 4464-4468	9.6	158
137	Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment. <i>Physical Review Letters</i> , 2011 , 107, 246402	7.4	76
136	Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc). <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 334201	1.8	22
135	A comparative picosecond transient infrared study of 1-methylcytosine and 5'-dCMP that sheds further light on the excited states of cytosine derivatives. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4212-5	16.4	39
134	Comment on G eneralized Gradient Approximation +UStudy for Metallization Mechanism of Niobium-Doped Anatase Titanium Dioxide[] <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 069101	1.4	1
133	Nature of the band gap of Tl2O3. <i>Physical Review B</i> , 2011 , 83,	3.3	37
132	Comment on G eneralized Gradient Approximation +UStudy for Metallization Mechanism of Niobium-Doped Anatase Titanium Dioxide[] <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 069101	1.4	
131	Understanding conductivity anomalies in Cu(I)-based delafossite transparent conducting oxides: Theoretical insights. <i>Journal of Chemical Physics</i> , 2010 , 132, 024707	3.9	93
130	Conductivity Limits in CuAlO2 from Screened-Hybrid Density Functional Theory. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3195-3199	6.4	102

(2009-2010)

129	Stability, geometry, and electronic structure of an alternative I-III-VI2 material, CuScS2: A hybrid density functional theory analysis. <i>Applied Physics Letters</i> , 2010 , 97, 131904	3.4	13
128	Undoped n-Type Cu2O: Fact or Fiction?. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2582-2585	6.4	111
127	Electronic energy changes associated with Guanine quadruplex formation: an investigation at the atomic level. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 9833-9	3.4	18
126	GGA+U description of lithium intercalation into anatase TiO2. <i>Physical Review B</i> , 2010 , 82,	3.3	93
125	Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory. <i>Physical Review B</i> , 2010 , 81,	3.3	64
124	Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4636-4645	3.8	435
123	Understanding conductivity in SrCu2O2: stability, geometry and electronic structure of intrinsic defects from first principles. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1086-1096		39
122	Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2321-2328	3.8	326
121	Testing Interatomic Potentials for QM/MM Embedded-Cluster Calculations on Ceria Surfaces. <i>E-Journal of Surface Science and Nanotechnology</i> , 2009 , 7, 413-420	0.7	8
120	A GGA+U study of the reduction of ceria surfaces and their partial reoxidation through NO2 adsorption. <i>Molecular Simulation</i> , 2009 , 35, 577-583	2	30
119	Polaronic trapping of electrons and holes by native defects in anatase TiO2. <i>Physical Review B</i> , 2009 , 80,	3.3	222
118	Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	33
117	A Density Functional Theory + U Study of Oxygen Vacancy Formation at the (110), (100), (101), and (001) Surfaces of Rutile TiO2. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7322-7328	3.8	192
116	Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2009 , 1788, 638-49	3.8	37
115	Intrinsic ferromagnetism in CeO(2): dispelling the myth of vacancy site localization mediated superexchange. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 405502	1.8	34
114	(Cu2S2)(Sr3Sc2O5)A Layered, Direct Band Gap, p-Type Transparent Conducting Oxychalcogenide: A Theoretical Analysis <i>Chemistry of Materials</i> , 2009 , 21, 5435-5442	9.6	66
113	Reactivity on the (110) Surface of Ceria: A GGA+U Study of Surface Reduction and the Adsorption of CO and NO2. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11095-11103	3.8	63
112	Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 439-448	3.8	236

111	Acceptor levels in p-type Cu(2)O: rationalizing theory and experiment. <i>Physical Review Letters</i> , 2009 , 103, 096405	7.4	237
110	Small polarons in Nb- and Ta-doped rutile and anatase TiO2. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5175		143
109	Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis. <i>Chemistry of Materials</i> , 2009 , 21, 4568-4576	9.6	89
108	Modeling the polaronic nature of p-type defects in Cu2O: the failure of GGA and GGA + U. <i>Journal of Chemical Physics</i> , 2009 , 131, 124703	3.9	113
107	X-ray spectroscopic study of the electronic structure of CuCrO2. <i>Physical Review B</i> , 2009 , 79,	3.3	82
106	Effect of Cr substitution on the electronic structure of CuAl1\(\mathbb{U}\)CrxO2. Physical Review B, 2009 , 79,	3.3	102
105	The Use of the “+U” Correction in Describing Defect States at Metal Oxide Surfaces: Oxygen Vacancies on CeO2 and TiO2, and Li-doping of MgO. <i>E-Journal of Surface Science and Nanotechnology</i> , 2009 , 7, 389-394	0.7	24
104	Competing Defect Mechanisms and Hydrogen Adsorption on Li-Doped MgO Low Index Surfaces: A DFT+U Study. <i>E-Journal of Surface Science and Nanotechnology</i> , 2009 , 7, 395-404	0.7	9
103	An ab initio Study of Reduction of V2O5 through the Formation of Oxygen Vacancies and Li Intercalation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9903-9911	3.8	181
102	The recognition and sensing of anions through "positive allosteric effects" using simple urea-amide receptors. <i>Journal of Organic Chemistry</i> , 2008 , 73, 9235-44	4.2	83
101	A comparative study of the electronic structures of SrCu2O2 and PbCu2O2 by density functional theory, high resolution X-ray photoemission and electron paramagnetic resonance spectroscopy. Journal of Materials Chemistry, 2008, 18, 2798		21
100	Selective formation of the rctt chair stereoisomers of octa-O-alkyl resorcin[4]arenes using Br\(\text{B}\)sted acid catalysis. <i>New Journal of Chemistry</i> , 2008 , 32, 994	3.6	12
99	Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives. <i>Chemical Communications</i> , 2007 , 2130-2	5.8	38
98	Atomistic modeling of multilayered ceria nanotubes. <i>Nano Letters</i> , 2007 , 7, 543-6	11.5	32
97	Polymorphism in Bismuth Stannate: A First-Principles Study. Chemistry of Materials, 2007, 19, 5158-51	64 9.6	40
96	Experimental and theoretical study of the electronic structures of PbO and PbO2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 267-277		92
95	Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 7971-7979	3.8	91
94	A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. <i>Surface Science</i> , 2007 , 601, 5034-5041	1.8	410

(2005-2007)

93	Computational approach to the basicity of a series of alpha1-adrenoceptor ligands in aqueous solution. <i>Bioorganic and Medicinal Chemistry</i> , 2007 , 15, 2850-5	3.4	15
92	Nature of electronic states at the Fermi level of metallic P bO2 revealed by hard x-ray photoemission spectroscopy. <i>Physical Review B</i> , 2007 , 75,	3.3	36
91	Vibrational properties of CO on ceria surfaces. Surface Science, 2006, 600, 175-178	1.8	42
90	The surface dependence of CO adsorption on Ceria. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16600-6	3.4	157
89	Reduction of NO2 on ceria surfaces. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2256-62	3.4	115
88	Application of molecular dynamics DL_POLY codes to interfaces of inorganic materials. <i>Molecular Simulation</i> , 2006 , 32, 1079-1093	2	16
87	Simulation of the structure of organosilane film coatings. <i>Molecular Simulation</i> , 2006 , 32, 1095-1101	2	2
86	CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 216-8	3.6	98
85	Electronic structure of the hand phases of Bi2O3: A combined ab initio and x-ray spectroscopy study. <i>Physical Review B</i> , 2006 , 73,	3.3	168
84	Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. <i>Physical Review Letters</i> , 2006 , 96, 157403	7.4	182
83	Computational study of antagonist/alpha1A adrenoceptor complexesobservations of conformational variations on the formation of ligand/receptor complexes. <i>Journal of Medicinal Chemistry</i> , 2006 , 49, 501-10	8.3	15
82	A theoretical and experimental study of the distorted pyrochlore Bi2Sn2O7. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3452		27
81	Hydrogen adsorption and diffusion on Pt {111} and PtSn {111}. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1989		36
8o	Hole localization in Al doped silica: A DFT + U description. <i>Journal of Chemical Physics</i> , 2006 , 125, 14470	13.9	101
79	Theoretical proton affinities of alpha1 adrenoceptor ligands. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 1580-7	3.4	11
78	Oxygen vacancy formation and migration in ceria. <i>Solid State Ionics</i> , 2006 , 177, 3069-3074	3.3	256
77	Asymmetric acyl-transfer promoted by readily assembled chiral 4-N,N-dialkylaminopyridine derivatives. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 2785-93	3.9	50
76	Influence of the anion on lone pair formation in Sn(II) monochalcogenides: a DFT study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 18868-75	3.4	149

75	The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1422-1428	3.3	207
74	Experimental and theoretical study of the electronic structure of HgO and Tl2O3. <i>Physical Review B</i> , 2005 , 71,	3.3	48
73	Computer aided design of nano-structured materials with tailored ionic conductivities. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 16-8	3.6	22
72	Comparative molecular dynamics simulations of uncomplexed, 'agonist-bound' and 'antagonist-bound' alpha1A adrenoceptor models. <i>Biochemical and Biophysical Research Communications</i> , 2005 , 333, 737-41	3.4	4
71	Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. <i>Surface Science</i> , 2005 , 576, 217-229	1.8	576
70	The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. <i>Surface Science</i> , 2005 , 595, 223-232	1.8	585
69	Why is lead dioxide metallic?. Chemical Physics Letters, 2005, 411, 181-185	2.5	59
68	The electronic structure of alkali doped alkaline earth metal oxides: Li doping of MgO studied with DFT-GGA and GGA+U. <i>Surface Science</i> , 2005 , 586, 25-37	1.8	57
67	Modelling the interaction of catecholamines with the alpha 1A adrenoceptor towards a ligand-induced receptor structure. <i>Journal of Computer-Aided Molecular Design</i> , 2005 , 19, 357-67	4.2	2
66	Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. <i>Physical Review B</i> , 2004 , 70,	3.3	105
65	Modelling Inorganic Solids and Their Interfaces: A Combined Approach of Atomistic and Electronic Structure Simulation Techniques. <i>ChemInform</i> , 2004 , 35, no		1
64	On the involvement of the shallow core 5d level in the bonding in HgO. <i>Chemical Physics Letters</i> , 2004 , 399, 98-101	2.5	25
63	Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles. <i>Chemical Communications</i> , 2004 , 2294-5	5.8	50
62	Computational development of an alpha1A-adrenoceptor model in a membrane mimic. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 324, 916-21	3.4	12
61	Re-evaluation of the adsorption mode of ethene on the {111} surface of palladium using density functional theory. <i>Surface Science</i> , 2003 , 547, L853-L858	1.8	6
60	Modelling inorganic solids and their interfaces: a combined approach of atomistic and electronic structure simulation techniques. <i>Faraday Discussions</i> , 2003 , 124, 155-70; discussion 205-13, 453-5	3.6	26
59	Synthesis, structure and ionic conductivity in nanopolycrystalline BaF2/CaF2 heterolayers. <i>Chemical Communications</i> , 2003 , 1804-6	5.8	15
58	Metal oxide encapsulated nanoparticles. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2078		4

(2001-2002)

57	Sulfonylation of substituted benzenes using Zn-exchanged zeolites. <i>Journal of Molecular Catalysis A</i> , 2002 , 178, 205-209		14
56	Atomistic and electronic structure calculation of defects at the surfaces of oxides. <i>Radiation Effects and Defects in Solids</i> , 2002 , 157, 773-781	0.9	12
55	Atomistic Structures of 25 000-Atom Oxide Nanoparticles Supported on an Oxide Substrate. Journal of Physical Chemistry B, 2002 , 106, 10793-10807	3.4	11
54	Inducing Polycrystallinity within Supported Oxide Thin Films Using Template Buffer Layers. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3778-3787	3.4	10
53	Atomistic models for CeO(2)(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11429-39	16.4	213
52	The Atomistic Structure of an MgO Cluster, Supported on BaO, Synthesized Using Simulated Amorphization and Recrystallization. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3916-3925	3.4	6
51	Synthesis of a BaO thin film supported on MgO(001) using a shell-model amorphisation and recrystallisation strategy. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5189-5198	3.6	О
50	Atomistic structure of oxide nanoparticles supported on an oxide substrate. <i>Physical Review B</i> , 2002 , 65,	3.3	21
49	Modelling oxide thin films. <i>Molecular Simulation</i> , 2002 , 28, 683-725	2	20
48	Atomistic simulation studies on the effect of pressure on diffusion at the MgO 410/[001] tilt grain boundary. <i>Physical Review B</i> , 2001 , 64,	3.3	12
47	The origin of the electron distribution in SnO. Journal of Chemical Physics, 2001, 114, 758	3.9	86
46	A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4889-4894	3.4	168
45	Structural exploration of thin-film oxide interfaces via limulated amorphisation and recrystallisation \(\Delta Science, \) 2001 , 473, 97-107	1.8	15
44	Atomistic simulation of crystal growth at the a<100> screw dislocation terminating at the {100} surface of MgO. <i>Surface Science</i> , 2001 , 474, L185-L190	1.8	17
43	Surface structures and defect properties of pure and doped La2NiO4. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2597-2602		64
42	Evolution and atomistic structure of dislocations defects and clusters within CeO2 supported on ZrO2. <i>Chemical Communications</i> , 2001 , 289-290	5.8	9
41	The enumeration of structures for Ealumina based on a defective spinel structure. <i>Chemical Communications</i> , 2001 , 1076-1077	5.8	6
40	Structural Characterization of the CeO2/YSZ(111) Catalytic System Synthesized Using Simulated Amorphization and Recrystallization. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 12481-12489	3.4	10

39	The Atomistic Structures of MgO/SrTiO3(001) and BaO/SrTiO3(001) Using Simulated Amorphization and Recrystallization. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 5506-5514	3.4	15
38	Calculation of the energy profile for the fluorination of dichloromethane over an 🗟 lumina catalyst. <i>Applied Catalysis A: General</i> , 2000 , 200, 263-274	5.1	7
37	Computer simulation of the reactive element effect in NiO grain boundaries. <i>Acta Materialia</i> , 2000 , 48, 3039-3048	8.4	16
36	Atomistic simulation of the effect of temperature and pressure on point defect formation in MgSiO3perovskite and the stability of CaSiO3perovskite. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 8427-8438	1.8	12
35	Density functional theory calculations of adsorption of water at calcium oxide and calcium fluoride surfaces. <i>Surface Science</i> , 2000 , 452, 9-19	1.8	75
34	(adsorption of ethene on to the {111} surface of copper: A periodic ab initio study of the effect of k-point sampling on the energy, atomic and electronic structure. <i>Surface Science</i> , 2000 , 459, 93-103	1.8	17
33	Ab initio simulation of the interaction of hydrogen with the {111} surfaces of platinum, palladium and nickel. A possible explanation for their difference in hydrogenation activity. <i>Chemical Communications</i> , 2000 , 705-706	5.8	29
32	Defect chemistry and surface properties of LaCoO3. Journal of Materials Chemistry, 2000, 10, 2298-2305		87
31	Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 1523-1529	3.6	32
30	Simulated amorphisation and recrystallisation:nanocrystallites within meso-scale supported oxides. Journal of Materials Chemistry, 2000 , 10, 2241-2243		16
29	Atomistic simulation methodologies for modelling the nucleation, growth and structure of interfaces. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1315-1324		21
28	Density Functional Theory Calculations on the Interaction of Ethene with the {111} Surface of Platinum. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 6439-6446	3.4	39
27	Dislocations, lattice slip, defects and rotated domains: The effect of a lattice misfit on supported thin-film metal oxides. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 5491-5499	3.6	15
26	Computer simulation of pressure-induced structural transitions in MgO [001] tilt grain boundaries. <i>American Mineralogist</i> , 1999 , 84, 138-143	2.9	8
25	Dehydration of butan-2-ol using modified zeolite crystals. <i>Applied Catalysis A: General</i> , 1999 , 182, 75-84	5.1	13
24	Methanol conversion to hydrocarbons over zeolite catalysts: comments on the reaction mechanism for the formation of the first carbonBarbon bond. <i>Microporous and Mesoporous Materials</i> , 1999 , 29, 67-7	7 5·3	39
23	Atomistic simulation of screw dislocations in rock salt structured materials. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1999 , 79, 527-536		28
22	Ab initio calculation of the origin of the distortion of ₽bO. <i>Physical Review B</i> , 1999 , 59, 8481-8486	3.3	146

21	Atomistic simulation of oxide dislocations and interfaces. <i>Radiation Effects and Defects in Solids</i> , 1999 , 151, 185-195	0.9	7
20	Origin of the Lone Pair of ⊕bO from Density Functional Theory Calculations. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 1258-1262	3.4	144
19	Simulation of the structure and stability of sphalerite (ZnS) surfaces. <i>American Mineralogist</i> , 1998 , 83, 141-146	2.9	53
18	Vacancy migration at the {410}/[001] symmetric tilt grain boundary of MgO: An atomistic simulation study. <i>Physical Review B</i> , 1997 , 56, 11477-11484	3.3	35
17	Atomistic simulation of mineral surfaces: Studies of surface stability and growth. <i>Phase Transitions</i> , 1997 , 61, 83-107	1.3	25
16	Effect of Lattice Relaxation on Cation Exchange in Zeolite A Using Computer Simulation. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 9964-9972	3.4	17
15	Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. <i>Journal of Materials Chemistry</i> , 1997 , 7, 563-568		278
14	Computer simulation of the structure and stability of forsterite surfaces. <i>Physics and Chemistry of Minerals</i> , 1997 , 25, 70-78	1.6	64
13	Free-energy calculations of thermodynamic, vibrational, elastic, and structural properties of alpha -quartz at variable pressures and temperatures. <i>Physical Review B</i> , 1996 , 54, 826-835	3.3	34
12	Atomistic simulation of dislocations, surfaces and interfaces in MgO. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 433		374
12			374 45
	Society, Faraday Transactions, 1996 , 92, 433 Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of	1.3	
11	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2081 Pressure-induced structural changes in HgBa2CaCu2O6+IIPhysica C: Superconductivity and Its	1.3	45
11	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2081 Pressure-induced structural changes in HgBa2CaCu2O6+IIPhysica C: Superconductivity and Its Applications, 1996 , 266, 165-172 Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and</i>	1.3 3.3	45
11 10 9	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2081 Pressure-induced structural changes in HgBa2CaCu2O6+IIPhysica C: Superconductivity and Its Applications, 1996, 266, 165-172 Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 407-418		45 2 27
11 10 9	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2081 Pressure-induced structural changes in HgBa2CaCu2O6+IlPhysica C: Superconductivity and Its Applications, 1996 , 266, 165-172 Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1996 , 74, 407-418 Molecular-dynamics simulations of nickel oxide surfaces. <i>Physical Review B</i> , 1995 , 52, 5323-5329 Dynamical instabilities in alpha -quartz and alpha -berlinite: A mechanism for amorphization.	3.3	45 2 27 76
11 10 9 8	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2081 Pressure-induced structural changes in HgBa2CaCu2O6+IlPhysica C: Superconductivity and Its Applications, 1996 , 266, 165-172 Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1996 , 74, 407-418 Molecular-dynamics simulations of nickel oxide surfaces. <i>Physical Review B</i> , 1995 , 52, 5323-5329 Dynamical instabilities in alpha -quartz and alpha -berlinite: A mechanism for amorphization. <i>Physical Review B</i> , 1995 , 52, 13306-13309	3·3 3·3	45 2 27 76 32

3	The extrapolation of elastic moduli to high pressure and temperature. <i>Physics and Chemistry of Minerals</i> , 1993 , 20, 69	1.6	5
2	Molecular dynamics simulation of fluoride-perovskites. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 2097-2108	1.8	20
1	Exploring the dark: detecting long-lived Nile Red 3ILCT states in Ru(II) polypyridyl photosensitisers. Journal of Materials Chemistry C,	7.1	O