Roland Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8292480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 2018, 47, 279-293.	3.6	225
2	Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. Journal of Cleaner Production, 2017, 143, 615-623.	4.6	152
3	Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 2016, 218, 167-173.	4.8	112
4	Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresource Technology, 2017, 241, 508-516.	4.8	85
5	Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 2016, 211, 398-405.	4.8	84
6	A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochemistry, 2019, 79, 1-10.	1.8	79
7	Restructuring the Conventional Sugar Beet Industry into a Novel Biorefinery: Fractionation and Bioconversion of Sugar Beet Pulp into Succinic Acid and Value-Added Coproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 6569-6579.	3.2	70
8	Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Research International, 2015, 73, 52-61.	2.9	57
9	Assessing the organic fraction of municipal solid wastes for the production of lactic acid. Biochemical Engineering Journal, 2019, 150, 107251.	1.8	53
10	Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity. Journal of Cleaner Production, 2020, 247, 119165.	4.6	53
11	Recent Advances in D-Lactic Acid Production from Renewable Resources. Food Technology and Biotechnology, 2019, 57, 293-304.	0.9	47
12	Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresource Technology Reports, 2019, 6, 26-31.	1.5	43
13	Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process. Bioresource Technology, 2017, 243, 264-272.	4.8	40
14	High L(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresource Technology, 2020, 316, 123949.	4.8	37
15	Evaluation of various <i>Bacillus coagulans</i> isolates for the production of high purity Lâ€lactic acid using defatted rice bran hydrolysates. International Journal of Food Science and Technology, 2019, 54, 1321-1329.	1.3	36
16	Limited life cycle and cost assessment for the bioconversion of ligninâ€derived aromatics into adipic acid. Biotechnology and Bioengineering, 2020, 117, 1381-1393.	1.7	32
17	Production and Purification of l-lactic Acid in Lab and Pilot Scales Using Sweet Sorghum Juice. Fermentation, 2019, 5, 36.	1.4	31
18	Membrane Technologies for Lactic Acid Separation from Fermentation Broths Derived from Renewable Resources. Membranes, 2018, 8, 94.	1.4	30

ROLAND SCHNEIDER

#	Article	IF	CITATIONS
19	Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste. Journal of Fungi (Basel, Switzerland), 2021, 7, 766.	1.5	30
20	Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach. Microorganisms, 2020, 8, 1084.	1.6	24
21	Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresource Technology, 2021, 335, 125155.	4.8	24
22	Separation of lactic acid and recovery of salt-ions from fermentation broth. Journal of Chemical Technology and Biotechnology, 2017, 92, 504-511.	1.6	22
23	A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules, 2020, 25, 2113.	1.7	21
24	Chemical and Enzymatic Synthesis of Biobased Xylo-Oligosaccharides and Fermentable Sugars from Wheat Straw for Food Applications. Polymers, 2022, 14, 1336.	2.0	18
25	Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass. Molecules, 2020, 25, 2956.	1.7	17
26	From Upstream to Purification: Production of Lactic Acid from the Organic Fraction of Municipal Solid Waste. Waste and Biomass Valorization, 2020, 11, 5247-5254.	1.8	17
27	Leguminose green juice as an efficient nutrient for l (+)-lactic acid production. Journal of Biotechnology, 2016, 236, 26-34.	1.9	16
28	Investigation of spiral-wound membrane modules for the cross-flow nanofiltration of fermentation broth obtained from a pilot plant fermentation reactor for the continuous production of lactic acid. Bioresources and Bioprocessing, 2017, 4, 4.	2.0	8
29	L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans. Resources, 2020, 9, 89.	1.6	8
30	Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid. Bioprocess and Biosystems Engineering, 2017, 40, 981-988.	1.7	5