
Erhan Demirbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile and synergetic strategy for electrochemical sensing of rutin antioxidant by Ce–Cr doped magnetite@rGO. Materials Chemistry and Physics, 2022, 275, 125298.	2.0	23
2	Coreâ€shell Hierarchical Enzymatic Biosensor Based on Hyaluronic Acid Capped Copper Ferrite Nanoparticles for Determination of Endocrineâ€disrupting Bisphenol A. Electroanalysis, 2022, 34, 561-572.	1.5	12
3	An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode. Environmental Research, 2022, 212, 113071.	3.7	55
4	Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase. Food and Chemical Toxicology, 2022, 164, 113016.	1.8	23
5	Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform. Food and Chemical Toxicology, 2021, 147, 111886.	1.8	26
6	Novel SWCNT-hybrid nanomaterial functionalized with subphthalocyanine substituted asymmetrical zinc (II) phthalocyanine conjugate: Design, synthesis, characterization and sensor properties for pesticides. Sensors and Actuators B: Chemical, 2021, 329, 129198.	4.0	26
7	A synergetic and sensitive physostigmine pesticide sensor using copper complex of 3D zinc (II) phthalocyanine-SWCNT hybrid material. Biosensors and Bioelectronics, 2021, 174, 112819.	5.3	28
8	A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg ²⁺ ions in environmental samples. New Journal of Chemistry, 2021, 45, 14495-14507.	1.4	24
9	The Simultaneously Voltammetric Determination of Spinosad and Chlorantraniliprole Pesticides by Carbazole-Ferrocene Functionalized Carbon Nanotube Architecture. Journal of the Electrochemical Society, 2021, 168, 087513.	1.3	11
10	Coumarin bearing asymmetrical zinc(II) phthalocyanine functionalized SWCNT hybrid nanomaterial: Synthesis, characterization and investigation of bifunctional electrocatalyst behavior for water splitting. Journal of Electroanalytical Chemistry, 2021, 897, 115552.	1.9	15
11	A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sensors and Actuators B: Chemical, 2021, 345, 130344.	4.0	42
12	Treatment of phenol formaldehyde production wastewater by electrooxidation-electrofenton successive processes. Separation Science and Technology, 2020, 55, 2830-2843.	1.3	6
13	3D, covalent and noncovalent hybrid materials based on 3-phenylcoumarin derivatives and single walled carbon nanotubes as gas sensing layers. Applied Surface Science, 2020, 504, 144276.	3.1	15
14	Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples. Food and Chemical Toxicology, 2020, 146, 111847.	1.8	39
15	A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules, 2020, 25, 2073.	1.7	22
16	Ultrasensitive detection of rutin antioxidant through a magnetic micro-mesoporous graphitized carbon wrapped Co nanoarchitecture. Sensors and Actuators B: Chemical, 2020, 312, 127939.	4.0	60
17	Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Current Analytical Chemistry, 2020, 16, 176-183.	0.6	16
18	Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin. Chemical Engineering Journal, 2019, 375, 122102.	6.6	175

#	Article	IF	CITATIONS
19	BODIPY substituted zinc(II) phthalocyanine and its bulk heterojunction application in solar cells. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1132-1143.	0.4	8
20	Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‣ubphthalocyanine Hybrid Material. Electroanalysis, 2019, 31, 1697-1707.	1.5	37
21	Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: Synthesis, photophysical and spectroelectrochemical properties. Inorganica Chimica Acta, 2019, 494, 132-140.	1.2	33
22	Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation. Journal of Industrial and Engineering Chemistry, 2019, 77, 280-290.	2.9	102
23	Effect of different SWCNT-BODIPY hybrid materials for selective and sensitive electrochemical detection of guanine and adenine. Journal of Electroanalytical Chemistry, 2019, 840, 10-20.	1.9	27
24	Ammonia sensing performance of thin films of cobalt(II) phthalocyanine bearing fluorinated substituents. Journal of Materials Science: Materials in Electronics, 2019, 30, 7543-7551.	1.1	18
25	Phthalocyanine-nanocarbon materials and their composites: Preparation, properties, and applications. , 2019, , 677-709.		6
26	Investigation of electrochemical properties and gas adsorption studies of novel sandwich core phthalocyanines. Journal of Physical Organic Chemistry, 2019, 32, e3907.	0.9	12
27	Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosensors and Bioelectronics, 2019, 128, 144-150.	5.3	31
28	Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology. Separation Science and Technology, 2019, 54, 775-785.	1.3	27
29	3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sensors and Actuators B: Chemical, 2018, 267, 165-173.	4.0	38
30	Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia. Sensors and Actuators B: Chemical, 2018, 256, 853-860.	4.0	32
31	Removal of arsenate by electrocoagulation reactor using aluminum ball anode electrodes. Water Practice and Technology, 2018, 13, 753-763.	1.0	10
32	Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials. Dalton Transactions, 2018, 47, 9617-9626.	1.6	27
33	OPTIMIZATION OF SOME CATIONS FOR REMOVAL OF ARSENIC FROM GROUNDWATER BY ELECTROCOAGULATION PROCESS. Environmental Engineering and Management Journal, 2018, 17, 1079-1093.	0.2	2
34	Treatments of alkaline non-cyanide, alkaline cyanide and acidic zinc electroplating wastewaters by electrocoagulation. Chemical Engineering Research and Design, 2017, 105, 373-385.	2.7	35
35	Arsenite and arsenate removals from groundwater by electrocoagulation using iron ball anodes: Influence of operating parameters. Journal of Water Process Engineering, 2017, 18, 83-91.	2.6	25
36	Effect of covalent and non-covalent linking of zinc(II) phthalocyanine functionalised carbon nanomaterials on the sensor response to ammonia. Synthetic Metals, 2017, 227, 78-86.	2.1	28

#	Article	IF	CITATIONS
37	Combined effects of co-existing anions on the removal of arsenic from groundwater by electrocoagulation process: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 2017, 5, 3792-3802.	3.3	24
38	Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Chemical Engineering Research and Design, 2017, 105, 79-90.	2.7	133
39	High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Advances, 2016, 6, 93453-93462.	1.7	33
40	Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 2016, 101, 87-100.	1.8	138
41	Effect of covalent and non-covalent linking on the structure, optical and electrical properties of novel zinc(II) phthalocyanine functionalized carbon nanomaterials. Polyhedron, 2016, 110, 37-45.	1.0	25
42	Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. Journal of Environmental Chemical Engineering, 2016, 4, 1484-1494.	3.3	57
43	Arsenic removal from groundwater of Sivas-ÅžarkiÅŸla Plain, Turkey by electrocoagulation process: Comparing with iron plate and ball electrodes. Journal of Environmental Chemical Engineering, 2015, 3, 1096-1106.	3.3	53
44	Removal of As(V) from groundwater by a new electrocoagulation reactor using Fe ball anodes: optimization of operating parameters. Desalination and Water Treatment, 2015, 56, 1177-1190.	1.0	17
45	Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation. Journal of Water Process Engineering, 2015, 8, 64-74.	2.6	77
46	Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes. Desalination and Water Treatment, 2015, 56, 1191-1201.	1.0	21
47	Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: optimisation of operating parameters using central composite design. Coloration Technology, 2014, 130, 226-235.	0.7	43
48	The application of electrocoagulation process for treatment of the red mud dam wastewater from Bayer's process. Journal of Environmental Chemical Engineering, 2014, 2, 2211-2220.	3.3	21
49	Effects of blended vegetableâ€based cutting fluids with extreme pressure on tool wear and force components in turning of Al 7075â€16. Lubrication Science, 2013, 25, 39-52.	0.9	24
50	A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant. Separation and Purification Technology, 2013, 112, 11-19.	3.9	99
51	Environmentally Friendly Machining: Vegetable Based Cutting Fluids. Materials Forming, Machining and Tribology, 2013, , 23-47.	0.7	63
52	Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. Journal of Cleaner Production, 2013, 42, 159-166.	4.6	198
53	Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalination and Water Treatment, 2013, 51, 6676-6687.	1.0	36
54	Effects of vegetable-based cutting fluids on the wear in drilling. Sadhana - Academy Proceedings in Engineering Sciences, 2013, 38, 687-706.	0.8	23

#	Article	IF	CITATIONS
55	A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. Journal of Environmental Chemical Engineering, 2013, 1, 989-995.	3.3	167
56	Synthesis of a series of triple-bridged cyclotriphosphazene hexa-alkoxy derivatives and investigation of their structural and mesomorphic properties. Liquid Crystals, 2013, 40, 624-631.	0.9	28
57	The effect of extreme pressure added vegetable based cutting fluids on cutting performance in milling. Industrial Lubrication and Tribology, 2013, 65, 181-193.	0.6	14
58	Electrochemical treatment of Baker's yeast wastewater containing melanoidin: optimization through response surface methodology. Water Science and Technology, 2012, 65, 2183-2190.	1.2	18
59	Effect of operational parameters on the removal of phenol from aqueous solutions by electrocoagulation using Fe and Al electrodes. Desalination and Water Treatment, 2012, 46, 366-374.	1.0	22
60	Performance analysis of developed vegetable-based cutting fluids by D-optimal experimental design in turning process. International Journal of Computer Integrated Manufacturing, 2012, 25, 1165-1181.	2.9	12
61	Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination, 2012, 286, 200-209.	4.0	130
62	Evaluation of New Vegetable-Based Cutting Fluids on Thrust Force and Surface Roughness in Drilling of AISI 304 Using Taguchi Method. Materials and Manufacturing Processes, 2011, 26, 1136-1146.	2.7	61
63	Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribology International, 2011, 44, 1864-1871.	3.0	158
64	Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. Journal of Cleaner Production, 2011, 19, 2049-2056.	4.6	281
65	Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta, 2011, 56, 5060-5070.	2.6	185
66	Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes. Separation and Purification Technology, 2011, 77, 283-293.	3.9	152
67	Optimization of surface roughness in drilling using vegetableâ€based cutting oils developed from sunflower oil. Industrial Lubrication and Tribology, 2011, 63, 271-276.	0.6	29
68	Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. Journal of Hazardous Materials, 2010, 173, 326-334.	6.5	132
69	Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. International Communications in Heat and Mass Transfer, 2010, 37, 1359-1365.	2.9	115
70	Decolorisation of aqueous reactive dye Remazol Red 3B by electrocoagulation. Coloration Technology, 2010, 126, 282-288.	0.7	16
71	Treatment of cadmium and nickel electroplating rinse water by electrocoagulation. Environmental Technology (United Kingdom), 2010, 31, 1471-1481.	1.2	74
72	Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Water Science and Technology, 2009, 60, 2261-2270.	1.2	52

#	Article	IF	CITATIONS
73	Removal of thiocyanate from aqueous solutions by ion exchange. Journal of Hazardous Materials, 2009, 166, 1367-1376.	6.5	40
74	Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination, 2009, 243, 8-21.	4.0	113
75	Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2008, 150, 737-746.	6.5	270
76	Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 2008, 154, 787-794.	6.5	112
77	Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash. Desalination, 2007, 212, 282-293.	4.0	98
78	The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials, 2007, 147, 297-306.	6.5	141
79	Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 2006, 190, 201-211.	4.0	266
80	Treatment of levafix orange textile dye solution by electrocoagulation. Journal of Hazardous Materials, 2006, 132, 183-188.	6.5	216
81	Adsorption Kinetics for the Removal of Nitrite Ions from Aqueous Solutions by an Ion-Exchange Resin. Adsorption Science and Technology, 2006, 24, 131-142.	1.5	8
82	Detection of Volatile Organic Compounds in Aqueous Solutions by Phthalocyanine Coated Quartz Crystal Microbalance. Sensor Letters, 2006, 4, 446-451.	0.4	3
83	Determination of Heavy Metal Ions in Aqueous Solutions by Phthalocyanine Coated Quartz Crystal Microbalance. Sensor Letters, 2006, 4, 312-318.	0.4	1
84	Coherent anti-stokes Raman spectroscopy studies of vapour phase niobium pentachloride. Vibrational Spectroscopy, 2005, 37, 141-144.	1.2	1
85	Non-steady-state kinetic analysis of coupled transport of thiocyanate ions through binary liquid membranes. Desalination, 2005, 175, 237-246.	4.0	7
86	Cyanide ions transport from aqueous solutions by using quaternary ammonium salts through bulk liquid membranes. Desalination, 2005, 180, 139-150.	4.0	16
87	Effect of carrier type on coupled transport kinetics of thiocyanate ions through liquid membranes. Desalination, 2004, 160, 253-262.	4.0	7
88	Modelling the Effects of Adsorbent Dose and Particle Size on the Adsorption of Cr(VI) Ions from Aqueous Solutions. Adsorption Science and Technology, 2004, 22, 583-594.	1.5	11
89	Adsorption of Cobalt(II) Ions from Aqueous Solution onto Activated Carbon Prepared from Hazelnut Shells. Adsorption Science and Technology, 2003, 21, 951-963.	1.5	115