Esther Menendez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8291678/publications.pdf

Version: 2024-02-01

		430843	434170
57	1,204	18	31
papers	1,204 citations	h-index	g-index
75	75	75	1288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2015, 2, 183-205.	1.1	222
2	Use of <i>Rhizobium leguminosarum</i> as a potential biofertilizer for <i>Lactuca sativa</i> and <i>Daucus carota</i> crops. Journal of Plant Nutrition and Soil Science, 2013, 176, 876-882.	1.9	99
3	Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2852-2858.	1.7	50
4	Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Scientific Reports, 2018, 8, 295.	3.3	50
5	Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2015, 2, 163-182.	1.1	50
6	Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants, 2019, 8, 42.	3 . 5	49
7	Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 2017, 3, 502-524.	2.2	48
8	History and current taxonomic status of genus Agrobacterium. Systematic and Applied Microbiology, 2020, 43, 126046.	2.8	41
9	Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops. Life, 2020, 10, 24.	2.4	33
10	Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues. Journal of Plant Physiology, 2013, 170, 172-178.	3 . 5	31
11	On the bright side of a forest pest-the metabolic potential of bark beetles' bacterial associates. Science of the Total Environment, 2018, 619-620, 9-17.	8.0	25
12	Plant Growth Promotion Abilities of Phylogenetically Diverse Mesorhizobium Strains: Effect in the Root Colonization and Development of Tomato Seedlings. Microorganisms, 2020, 8, 412.	3.6	25
13	Invasion of the Brazilian campo rupestre by the exotic grass Melinis minutiflora is driven by the high soil N availability and changes in the N cycle. Science of the Total Environment, 2017, 577, 202-211.	8.0	24
14	Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops. Agronomy, 2020, 10, 1788.	3.0	24
15	High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon, 2021, 7, e08142.	3.2	24
16	A ClpB Chaperone Knockout Mutant of <i>Mesorhizobium ciceri</i> Shows a Delay in the Root Nodulation of Chickpea Plants. Molecular Plant-Microbe Interactions, 2012, 25, 1594-1604.	2.6	23
17	Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2306-2311.	1.7	22
18	Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2301-2305.	1.7	21

#	Article	lF	CITATIONS
19	The Legume Nodule Microbiome: A Source of Plant Growth-Promoting Bacteria., 2017,, 41-70.		20
20	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	3.6	20
21	Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis, 2015, 67, 25-32.	2.3	18
22	Approaches for the amelioration of adverse effects of drought stress on crop plants. Frontiers in Bioscience, 2021, 26, 928.	2.1	18
23	Genome Analysis of Endobacterium cerealis, a Novel Genus and Species Isolated from Zea mays Roots in North Spain. Microorganisms, 2020, 8, 939.	3.6	17
24	The high diversity of Lotus corniculatus endosymbionts in soils of northwest Spain. Symbiosis, 2015, 67, 11-20.	2.3	16
25	Paenibacillus periandrae sp. nov., isolated from nodules of Periandra mediterranea. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1838-1843.	1.7	16
26	Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4628-4632.	1.7	16
27	Bacterial Probiotics: A Truly Green Revolution. , 2017, , 131-162.		14
28	Brevundimonas canariensis sp. nov., isolated from roots of Triticum aestivum. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 969-973.	1.7	14
29	Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis, 2015, 67, 135-141.	2.3	11
30	The N-fixing legume Periandra mediterranea constrains the invasion of an exotic grass (Melinis) Tj ETQq0 0 0 rgB1	- /9.yerlock	10 Tf 50 30
31	Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2018, 31, 568-575.	2.6	9
32	Calcofluor white, an Alternative to Propidium Iodide for Plant Tissues Staining in Studies of Root Colonization by Fluorescent-tagged Rhizobia. Journal of Advances in Biology & Biotechnology, 2015, 2, 65-70.	0.2	9
33	Paenibacillus tritici sp. nov., isolated from wheat roots. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2312-2316.	1.7	9
34	Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Systematic and Applied Microbiology, 2015, 38, 346-350.	2.8	8
35	Effective Colonization of Spinach Root Surface by Rhizobium. , 2016, , 109-122.		8
36	Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Scientific Reports, 2019, 9, 13907.	3.3	8

#	Article	IF	Citations
37	Future Perspective in Organic Farming Fertilization. , 2019, , 269-315.		8
38	Recent Advances in the Active Biomolecules Involved in Rhizobia-Legume Symbiosis., 2017, , 45-74.		7
39	Heterologous expression of nifA or nodD genes improves chickpea-Mesorhizobium symbiotic performance. Plant and Soil, 2019, 436, 607-621.	3.7	7
40	Rhizobium Presence and Functions in Microbiomes of Non-leguminous Plants. Soil Biology, 2021, , 241-266.	0.8	7
41	Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 2017, 3, 747-748.	2.2	7
42	Knock, knock-let the bacteria in: enzymatic potential of plant associated bacteria., 2020,, 169-178.		6
43	Agrobacterium cavarae sp. nov., isolated from maize (Zea mays L.) roots. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5512-5519.	1.7	6
44	Rhizobium as Potential Biofertilizer of Eruca Sativa. , 2016, , 213-220.		5
45	Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize. , 2016, , 23-35.		5
46	Analysis of Cultivable Endophytic Bacteria in Roots of Maize in a Soil from Le \tilde{A}^3 n Province in Mainland Spain. , 2016, , 45-53.		5
47	Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics. Environmental Science and Pollution Research, 2017, 24, 17436-17445.	5. 3	5
48	Biofertilizers Based on Bacterial Endophytes Isolated from Cereals: Potential Solution to Enhance These Crops. , 2018, , 175-203.		5
49	Bacteria-Inducing Legume Nodules Involved in the Improvement of Plant Growth, Health and Nutrition. , 2019, , 79-104.		4
50	Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. Biology, 2021, 10, 209.	2.8	4
51	Rhizobial Biofertilizers for Ornamental Plants., 2016,, 13-21.		3
52	Actinobacteria and Their Role as Plant Probiotics. Soil Biology, 2019, , 333-351.	0.8	3
53	Rhizobium Symbiotic Enzyme Cellulase CelC2: Properties and Applications. , 2016, , 81-89.		2
54	Role of QseG membrane protein in beneficial enterobacterial interactions with plants and <i>Mesorhizobia</i> . Journal of Plant Interactions, 2021, 16, 510-521.	2.1	2

#	Article	IF	CITATIONS
55	Identification of Human Pathogenic Bacteria in Plant Roots by Using MALDI-TOF MS Methodology. , 2016, , 3-12.		О
56	Unlocking rhizospheric bacteria secondary metabolism: genome analysis for the discovery of novel antimicrobial compounds. , 0, , .		0
57	Biological Activity of Plant Essential Oils against Fusarium circinatum. , 2021, 13, .		O