Fan Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8291493/fan-zhang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	1,616	18	37
papers	citations	h-index	g-index
37 ext. papers	2,281 ext. citations	10.1 avg, IF	4.96 L-index

#	Paper	IF	Citations
35	Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2022 , 134, e202111627	3.6	1
34	Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	9
33	Extended Ladder-Type Conjugated Polymers via BN-Annulation. <i>Organic Materials</i> , 2021 , 03, 221-227	1.9	
32	Hot-Melt Adhesive Based on Dynamic Oximelarbamate Bonds. <i>Industrial & Discrete Managering Chemistry Research</i> , 2021 , 60, 6925-6931	3.9	0
31	Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie</i> , 2021 , 133, 13726-13732	3.6	3
30	Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13614-13620	16.4	18
29	A metal-free approach to bipyridinium salt-based conjugated porous polymers with olefin linkages. <i>Polymer Chemistry</i> , 2021 , 12, 1661-1667	4.9	7
28	Recyclable amphiphilic porous thin-films as electrodes for high-performance potassium-ion transport and storage. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3099-3109	7.8	1
27	Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11893-11900	16.4	78
26	Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13927-13934	13	16
25	Concise Approach to T-Shaped NBN-Phenalene Cored Luminogens as Intensive Blue Light Emitters. <i>Chemistry - A European Journal</i> , 2020 , 26, 13966-13972	4.8	1
24	A monomer-assembly template-directed synthesis of conjugated porous polymer microtubular bundles. <i>Materials Horizons</i> , 2020 , 7, 551-558	14.4	3
23	Extended -Symmetric Double NBN-Heterohelicenes with Exceptional Luminescent Properties. <i>Organic Letters</i> , 2020 , 22, 209-213	6.2	31
22	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17498-17506	13	24
21	Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. <i>Angewandte Chemie</i> , 2020 , 132, 24053-24061	3.6	11
20	Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23845-23853	16.4	64
19	Bottom-Up Preparation of Fully sp2-Bonded Porous Carbons with High Photoactivities. <i>Advanced Functional Materials</i> , 2019 , 29, 1808423	15.6	18

18	An Olefin-Linked Covalent Organic Framework as a Flexible Thin-Film Electrode for a High-Performance Micro-Supercapacitor. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12065-12	.d691	111
17	Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. <i>Nature Communications</i> , 2019 , 10, 2467	17.4	218
16	Successive Annulation to Fully Zigzag-Edged Polycyclic Heteroaromatic Hydrocarbons with Strong Blue-Green Electroluminescence. <i>Organic Letters</i> , 2019 , 21, 4575-4579	6.2	26
15	Side-chain-tuned Extended porous polymers for visible light-activated hydrogen evolution. <i>Polymer Chemistry</i> , 2019 , 10, 3758-3763	4.9	19
14	A room-temperature interfacial approach towards iron/nitrogen co-doped fibrous porous carbons as electrocatalysts for the oxygen reduction reaction and Zn-Air batteries. <i>Nanoscale</i> , 2019 , 11, 10257-1	Ø2 ⁷ 65	26
13	Concisely modularized assembling of graphene-based thin films with promising electrode performance. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1462-1470	7.8	6
12	Ionized aromatization approach to charged porous polymers as exceptional absorbents. <i>Polymer Chemistry</i> , 2019 , 10, 2792-2800	4.9	4
11	Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14272-14279	16.4	177
10	An Olefin-Linked Covalent Organic Framework as a Flexible Thin-Film Electrode for a High-Performance Micro-Supercapacitor. <i>Angewandte Chemie</i> , 2019 , 131, 12193-12197	3.6	44
9	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. <i>Materials Horizons</i> , 2019 , 6, 1041-1049	14.4	37
8	Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton. <i>Accounts of Chemical Research</i> , 2018 , 51, 3191-3202	24.3	88
7	Asymmetric Boron-Cored Aggregation-Induced Emission Luminogen with Multiple Functions Synthesized through Stepwise Conversion from a Symmetric Ligand. <i>Journal of Organic Chemistry</i> , 2018 , 83, 12977-12984	4.2	6
6	Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and CoS Nanoplates as Efficient Bifunctional Oxygen Electrocatalysts. <i>ACS Applied Materials & Discourt & Discourt</i>	9.5	87
5	Molybdenum Carbide-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Electrocatalysts for Water Splitting in Alkaline Media. <i>ACS Nano</i> , 2017 , 11, 3933-3942	16.7	302
4	syn-BN-heteroacene cored conjugated oligomers with finely tuned blue-violet luminescent properties. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 7106-7111	3.9	7
3	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44010-44017	9.5	45
2	Substantial Cyano-Substituted Fully sp2-Carbon-Linked Framework: Metal-Free Approach and Visible-Light-Driven Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2017 , 27, 1703146	15.6	109
1	Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites. <i>Journal of Materials Chemistry A</i> ,	13	6