Maksim G Kozodaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8291063/publications.pdf

Version: 2024-02-01

31 papers 1,197 citations

16 h-index 32 g-index

32 all docs $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

1061 citing authors

#	Article	lF	Citations
1	Improved Ferroelectric Switching Endurance of La-Doped Hf _{0.5} Zr _{0.5} O ₂ Thin Films. ACS Applied Materials & amp; Interfaces, 2018, 10, 2701-2708.	8.0	207
2	Ultrathin Hf _{0.5} Zr _{0.5} O ₂ Ferroelectric Films on Si. ACS Applied Materials & Interfaces, 2016, 8, 7232-7237.	8.0	186
3	Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. Journal of Applied Physics, 2019, 125, .	2.5	110
4	Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks. Applied Physics Letters, 2016, 108, .	3.3	79
5	Ferroelectric Second-Order Memristor. ACS Applied Materials & Interfaces, 2019, 11, 32108-32114.	8.0	77
6	Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Applied Physics Letters, 2017, 111, .	3.3	69
7	Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films. Microelectronic Engineering, 2015, 147, 15-18.	2.4	64
8	La-doped Hf0.5Zr0.5O2 thin films for high-efficiency electrostatic supercapacitors. Applied Physics Letters, 2018, 113, .	3.3	43
9	Pen plotter printing of Co3O4 thin films: features of the microstructure, optical, electrophysical and gas-sensing properties. Journal of Alloys and Compounds, 2020, 832, 154957.	5.5	38
10	Origin of the retention loss in ferroelectric Hf0.5Zr0.5O2-based memory devices. Acta Materialia, 2021, 204, 116515.	7.9	36
11	Synthesis of Large Area Two-Dimensional MoS ₂ Films by Sulfurization of Atomic Layer Deposited MoO ₃ Thin Film for Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7521-7531.	5.0	34
12	Microplotter printing of planar solid electrolytes in the CeO2â€"Y2O3 system. Journal of Colloid and Interface Science, 2021, 588, 209-220.	9.4	28
13	Charge transport mechanism in thin films of amorphous and ferroelectric Hf0.5Zr0.5O2. JETP Letters, 2015, 102, 544-547.	1.4	25
14	Microextrusion printing of gas-sensitive planar anisotropic NiO nanostructures and their surface modification in an H2S atmosphere. Applied Surface Science, 2022, 578, 151984.	6.1	23
15	Low temperature plasmaâ€enhanced ALD TiN ultrathin films for Hf _{0.5} Zr _{0.5} O ₂ â€based ferroelectric MIM structures. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700056.	1.8	20
16	Temperature controlled Ru and RuO2 growth via O* radical-enhanced atomic layer deposition with Ru(EtCp)2. Journal of Chemical Physics, 2019, 151, 204701.	3.0	18
17	Resistance Switching Peculiarities in Nonfilamentary Selfâ€Rectified TiN/Ta ₂ O ₅ /Ta and TiN/HfO ₂ /Ta ₂ O ₅ /Ta Stacks. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900952.	1.8	18
18	Thickness-Dependent Structural and Electrical Properties of WS ₂ Nanosheets Obtained via the ALD-Grown WO ₃ Sulfurization Technique as a Channel Material for Field-Effect Transistors. ACS Omega, 2021, 6, 34429-34437.	3.5	16

#	Article	IF	CITATIONS
19	Influence of ALD Ru bottom electrode on ferroelectric properties of Hf0.5Zr0.5O2-based capacitors. Applied Physics Letters, 2020, 117 , .	3.3	15
20	Band Alignment in Asâ€Transferred and Annealed Graphene/MoS ₂ Heterostructures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900406.	2.4	14
21	Radical-Enhanced Atomic Layer Deposition of a Tungsten Oxide Film with the Tunable Oxygen Vacancy Concentration. Journal of Physical Chemistry C, 2020, 124, 18156-18164.	3.1	14
22	Leakage Currents Mechanism in Thin Films of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ . ECS Transactions, 2017, 75, 123-129.	0.5	13
23	Electroresistance effect in MoS2-Hf0.5Zr0.5O2 heterojunctions. Applied Physics Letters, 2021, 118, .	3.3	13
24	Influence of Reducing Agent on Properties of Thin WS ₂ Nanosheets Prepared by Sulfurization of Atomic Layer-Deposited WO ₃ . Journal of Physical Chemistry C, 2020, 124, 28169-28177.	3.1	9
25	Interface engineering for enhancement of the analog properties of W/WO _{3â^'} _x /HfO ₂ /Pd resistance switched structures. Journal Physics D: Applied Physics, 2021, 54, 504004.	2.8	8
26	Size-ordered 63Ni nanocluster film as a betavoltaic battery unit. Applied Physics Letters, 2018, 112, .	3.3	5
27	Structural, chemical and electrical properties of ALDâ€grown Hf _{<i>x</i>} Al _{1–<i>x</i>} O _{<i>y</i>} thin films for MIM capacitors. Physica Status Solidi (B): Basic Research, 2015, 252, 701-708.	1.5	4
28	Leakage currents mechanism in thin films of ferroelectric Hf _{0.5} Zr _{0.5} O ₂ . Journal of Physics: Conference Series, 2017, 864, 012002.	0.4	4
29	Forming-Free Nonfilamentary Resistive Switching in W/WO3–Âx/HFO2/Pd Structures. Nanobiotechnology Reports, 2021, 16, 737-744.	0.6	3
30	Charge transport in thin layers of ferroelectric Hf0.5Zr0.5O2. Russian Microelectronics, 2016, 45, 350-356.	0.5	1
31	Band Alignment of Graphene/MoS 2 /Fluorine Tin Oxide Heterojunction for Photodetector Application. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000744.	1.8	1