
Matheus Poletto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8290397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native Cellulose: Structure, Characterization and Thermal Properties. Materials, 2014, 7, 6105-6119.	1.3	691
2	Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 2012, 109, 148-153.	4.8	433
3	Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 2012, 126, 7-12.	4.8	243
4	Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 2012, 126, E337.	1.3	214
5	Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 2011, 96, 679-685.	2.7	181
6	Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose, 2014, 21, 177-188.	2.4	99
7	Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood. Materials Research, 2010, 13, 375-379.	0.6	96
8	Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Management, 2011, 31, 779-784.	3.7	92
9	Structural Characteristics and Thermal Properties of Native Cellulose. , 0, , .		70
10	Materials produced from plant biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose. Materials Research, 2012, 15, 421-427.	0.6	61
11	Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. Journal of Thermoplastic Composite Materials, 2012, 25, 821-833.	2.6	59
12	Materials produced from plant biomass: part III: degradation kinetics and hydrogen bonding in lignin. Materials Research, 2013, 16, 1065-1070.	0.6	47
13	Characterization and use of a lignin sample extracted from Eucalyptus grandis sawdust for the removal of methylene blue dye. International Journal of Biological Macromolecules, 2021, 170, 375-389.	3.6	43
14	Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose, 2019, 26, 4417-4429.	2.4	32
15	Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials, 2020, 13, 941.	1.3	30
16	Cellulose Nanowhiskers Extracted from Tempo-Oxidized Curaua Fibers. Journal of Natural Fibers, 2020, 17, 1355-1365.	1.7	29
17	THERMAL DEGRADATION AND MORPHOLOGICAL ASPECTS OF FOUR WOOD SPECIES USED IN LUMBER INDUSTRY. Revista Arvore, 2016, 40, 941-948.	0.5	25
18	Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers. Journal of Thermoplastic Composite Materials, 2017, 30, 1242-1254.	2.6	24

MATHEUS POLETTO

#	Article	IF	CITATIONS
19	Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 2014, 35, 1935-1942.	2.3	23
20	Dynamic mechanical analysis of recycled polystyrene composites reinforced with wood flour. Journal of Applied Polymer Science, 2012, 125, 935-942.	1.3	22
21	Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	13
22	Biocomposites of Low-Density Polyethylene Plus Wood Flour or Flax Straw: Biodegradation Kinetics across Three Environments. Polymers, 2021, 13, 2138.	2.0	13
23	Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	12
24	Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties. Journal of Thermoplastic Composite Materials, 2019, 32, 1056-1067.	2.6	12
25	Natural oils as coupling agents in recycled polypropylene wood flour composites: Mechanical, thermal and morphological properties. Polymers and Polymer Composites, 2020, 28, 443-450.	1.0	9
26	Pecan nutshell: morphological, chemical and thermal characterization. Journal of Materials Research and Technology, 2021, 13, 2229-2238.	2.6	9
27	Polypropylene-based wood-plastic composites: Effect of using a coupling agent derived from a renewable resource. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	8
28	Polystyrene cellulose fiber composites: effect of the processing conditions on mechanical and dynamic mechanical properties. Revista Materia, 2016, 21, 552-559.	0.1	7
29	Assessment of Morphological, Physical, Thermal, and Thermal Conductivity Properties of Polypropylene/Lignosulfonate Blends. Materials, 2021, 14, 543.	1.3	6
30	Comparative study of wood flour photodegradation of two wood species submitted to artificial weathering. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	6
31	FTIR AND WAXS STUDIES ON SIX VEGETAL FIBERS. Cellulose Chemistry and Technology, 2020, 54, 187-197.	0.5	5
32	Effect of styrene maleic anhydride on physical and mechanical properties of recycled polystyrene wood flour composites. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	4
33	Dynamic mechanical properties and the dynamic fragility concept applied to vegetal fiber on vegetal composite materials. Journal of Composite Materials, 2016, 50, 2469-2475.	1.2	4
34	Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	4
35	Preparation and Characterization of Hollow Glass Microspheres- Reinforced Poly (acrylonitrile-co-butadiene-co-styrene) Composites. Materials Research, 2018, 21, .	0.6	4
36	Effects of the coupling agent structure on the adhesion of recycled polystyrene wood flour composites: Thermal degradation kinetics and thermodynamics parameters. Journal of Composite Materials, 2016, 50, 3291-3299.	1.2	3

MATHEUS POLETTO

#	Article	IF	CITATIONS
37	Thermal Degradation of Thermosetting Nanocomposites. Engineering Materials, 2015, , 51-79.	0.3	3
38	Composites and Nanocomposites Based on Renewable and Sustainable Materials. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	2
39	Influence of coupling agents on rheological, thermal expansion and morphological properties of recycled poypropylene wood flour composites. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	2
40	Poly(acrylonitrile-co-butadiene-co-styrene) Reinforced with Hollow Glass Microspheres: Evaluation of Extrusion Parameters and Their Effects on the Composite Properties. Journal of Polymers, 2016, 2016, 1-7.	0.9	1
41	Change in shape of the crystallite size with wood flour and their native cellulose using WAXS studies. AIP Conference Proceedings, 2017, , .	0.3	Ο
42	THERMAL DECOMPOSITION OF WOOD FIBERS: THERMAL SIMULATION USING THE F-TEST STATISTICAL TOOL. Cellulose Chemistry and Technology, 2021, 55, 231-241.	0.5	0
43	Wood Treatments and Interfacial Bonding in Wood-Plastic Composites. Composites Science and Technology, 2021, , 43-65.	0.4	0
44	Materials from Biomass: A Constant Challenge. Current Applied Polymer Science, 2021, 4, 157-158.	0.2	0
45	Evaluation of the drying process and toxic metal contents in yerba mate cultivated in southern Brazil. Agronomia Colombiana, 2021, 39, 453-458.	0.1	0