

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8290051/publications.pdf Version: 2024-02-01

VALLI

#	Article	IF	CITATIONS
1	Chitin nanocrystal based aqueous inks for 3D printing via direct ink writing. Journal of Elastomers and Plastics, 2022, 54, 922-936.	1.5	2
2	Fabricating polycitrate-based biodegradable elastomer nanofibrous mats via electrospinning. Journal of Elastomers and Plastics, 2021, 53, 258-269.	1.5	1
3	Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers. Carbohydrate Polymers, 2021, 256, 117549.	10.2	16
4	Hydrophobic and Hydrophilic Effects in a Mussel-Inspired Citrate-Based Adhesive. Langmuir, 2021, 37, 311-321.	3.5	13
5	Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting. Journal of Polymer Engineering, 2020, 40, 591-599.	1.4	3
6	Full biodegradable elastomeric nanocomposites fabricated by chitin nanocrystal and poly(caprolactone-diol citrate) elastomer. Journal of Bioactive and Compatible Polymers, 2019, 34, 453-463.	2.1	1
7	New degradable composite elastomers of POC/PCL fabricated via in-situ copolymerization blending strategy. European Polymer Journal, 2019, 110, 337-343.	5.4	14
8	Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive. Carbohydrate Polymers, 2018, 190, 324-330.	10.2	42
9	Degradable Bioelastomers Prepared by a Facile Melt Polycondensation of Citric Acid and Polycaprolactone-diol. Journal of Macromolecular Science - Physics, 2018, 57, 679-690.	1.0	5
10	Fabrication of Nanocomposite Bioelastomer Porous Scaffold Based on Chitin Nanocrystal Supported Emulsion-Freeze-Casting. ACS Sustainable Chemistry and Engineering, 2017, 5, 3305-3313.	6.7	31
11	Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. Journal of Materials Science: Materials in Medicine, 2017, 28, 93.	3.6	13
12	A facile and green emulsion casting method to prepare chitin nanocrystal reinforced citrate-based bioelastomer. Carbohydrate Polymers, 2017, 157, 620-628.	10.2	36
13	Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality. Journal of Materials Science: Materials in Medicine, 2016, 27, 30.	3.6	29
14	Prominent reinforcing effect of chitin nanocrystals on electrospun polydioxanone nanocomposite fiber mats. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 44, 35-42.	3.1	23
15	Electrospun Cellulose Nanocrystals/Polycaprolactone Nanocomposite Fiber Mats. Journal of Macromolecular Science - Physics, 2014, 53, 820-828.	1.0	31
16	Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydrate Polymers, 2014, 101, 68-74.	10.2	64
17	Regulating the mechanical properties of poly(1,8-octanediol citrate) bioelastomer via loading of chitin nanocrystals. RSC Advances, 2014, 4, 41357-41363.	3.6	14
18	Chitin nanocrystal reinforced wetâ€spun chitosan fibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	11

Yali Ji

#	Article	IF	CITATIONS
19	Preparation, Characterization, and Rheological Properties of Dibutyrylchitin. Journal of Macromolecular Science - Physics, 2010, 49, 250-258.	1.0	5
20	Solubility of a High Molecular-Weight Bacterial Cellulose in Lithium Chloride/N,N-dimethylacetamide Solution. Journal of Macromolecular Science - Physics, 2010, 49, 1012-1018.	1.0	16
21	Morphologies of an Amphiphilic Diblock Copolymer of Poly (Ethylene Oxide)-b-Polystyrene and Its Blends with Poly (2,6-Dimethyl-1,4-Oxide). Polymer Bulletin, 2008, 60, 371-377.	3.3	1
22	Preparation and pH-sensitivity of polyacrylonitrile (PAN) based porous hollow gel fibers. Journal of Applied Polymer Science, 2008, 110, 313-320.	2.6	14
23	Crystallization Behavior of PEO in Nanoâ€Structured PEOâ€ <i>b</i> â€PS/PPO Blends. Journal of Macromolecular Science - Physics, 2007, 46, 1219-1229.	1.0	0
24	A Novel Approach to the Preparation of Nanoblends of Poly(2,6-dimethyl-1,4-phenylene) Tj ETQq0 0 0 rgBT /Over	lock_10 Tf	50,542 Td (c

25	A Novel Approach to the Preparation of Nano-Blends of PPO/PS/PA6. Polymer Bulletin, 2005, 54, 109-115.	3.3	8
26	Temperature-sensitive mussel-inspired citrate-based tissue adhesives with low-swelling. Journal of Adhesion, 0, , 1-18.	3.0	1