Paula J Mouser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289826/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-scale dynamic modeling of the competition between <i>Rhodoferax</i> and <i>Geobacter</i> in anoxic subsurface environments. ISME Journal, 2011, 5, 305-316.	4.4	275
2	Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells. Environmental Science & Technology, 2014, 48, 6508-6517.	4.6	244
3	Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 2016, 54, 174-193.	2.2	229
4	Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nature Microbiology, 2016, 1, 16146.	5.9	207
5	Proteogenomic Monitoring of <i>Geobacter</i> Physiology during Stimulated Uranium Bioremediation. Applied and Environmental Microbiology, 2009, 75, 6591-6599.	1.4	136
6	Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs. International Journal of Environmental Research and Public Health, 2021, 18, 4455.	1.2	107
7	Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiology Ecology, 2016, 92, fiw166.	1.3	96
8	Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis of Differential Gene Expression during Anaerobic Growth on Naphthalene. PLoS ONE, 2010, 5, e14072.	1.1	90
9	Influence of Heterogeneous Ammonium Availability on Bacterial Community Structure and the Expression of Nitrogen Fixation and Ammonium Transporter Genes during in Situ Bioremediation of Uranium-Contaminated Groundwater. Environmental Science & Technology, 2009, 43, 4386-4392.	4.6	88
10	Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation, 2015, 26, 271-287.	1.5	83
11	Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nature Microbiology, 2019, 4, 352-361.	5.9	78
12	Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2017, 51, 5377-5385.	4.6	71
13	Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6585-E6594.	3.3	69
14	A Multivariate Statistical Approach to Spatial Representation of Groundwater Contamination using Hydrochemistry and Microbial Community Profiles. Environmental Science & Technology, 2005, 39, 7551-7559.	4.6	65
15	Comparison of Bacterial Communities in New England Sphagnum Bogs Using Terminal Restriction Fragment Length Polymorphism (T-RFLP). Microbial Ecology, 2006, 52, 34-44.	1.4	64
16	Sulfide Generation by Dominant <i>Halanaerobium</i> Microorganisms in Hydraulically Fractured Shales. MSphere, 2017, 2, .	1.3	62
17	Analysis of Biostimulated Microbial Communities from Two Field Experiments Reveals Temporal and Spatial Differences in Proteome Profiles. Environmental Science & Technology, 2010, 44, 8897-8903.	4.6	54
18	Molecular analysis of phosphate limitation in <i>Geobacteraceae</i> during the bioremediation of a uranium-contaminated aquifer. ISME Journal, 2010, 4, 253-266.	4.4	51

PAULA J MOUSER

#	Article	IF	CITATIONS
19	Quantifying expression of <i>Geobacter</i> spp. oxidative stress genes in pure culture and during <i>in situ</i> uranium bioremediation. ISME Journal, 2009, 3, 454-465.	4.4	45
20	Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary. Environmental Science & Technology, 2018, 52, 6771-6779.	4.6	43
21	Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment. Applied Geochemistry, 2014, 42, 77-85.	1.4	40
22	Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms. Environmental Science & Technology, 2017, 51, 13985-13994.	4.6	39
23	Genome-Resolved Metagenomics Extends the Environmental Distribution of the <i>Verrucomicrobia</i> Phylum to the Deep Terrestrial Subsurface. MSphere, 2019, 4, .	1.3	38
24	Piezoceramic membrane with built-in ultrasonic defouling. Journal of Membrane Science, 2015, 494, 130-135.	4.1	36
25	Trends and future challenges in sampling the deep terrestrial biosphere. Frontiers in Microbiology, 2014, 5, 481.	1.5	35
26	Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Frontiers in Microbiology, 2018, 9, 2646.	1.5	33
27	Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback. Water Research, 2018, 136, 200-206.	5.3	31
28	Redox Conditions Alter Biodegradation Rates and Microbial Community Dynamics of Hydraulic Fracturing Fluid Organic Additives in Soil–Groundwater Microcosms. Environmental Engineering Science, 2016, 33, 827-838.	0.8	28
29	Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. Environmental Sciences: Processes and Impacts, 2019, 21, 256-268.	1.7	27
30	High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Science of the Total Environment, 2019, 668, 1094-1103.	3.9	27
31	Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland. Journal of Hydrology, 2005, 301, 250-266.	2.3	25
32	Suggested Reporting Parameters for Investigations of Wastewater from Unconventional Shale Gas Extraction. Environmental Science & Technology, 2013, 47, 13220-13221.	4.6	24
33	Distribution and fate of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment facilities. Environmental Sciences: Processes and Impacts, 2021, 23, 903-913.	1.7	23
34	Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	20
35	Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing <i>Halanaerobium</i> spp. Applied and Environmental Microbiology, 2019, 85, .	1.4	20
36	Variations in potential CH4 flux and CO2 respiration from freshwater wetland sediments that differ by microsite location, depth and temperature. Ecological Engineering, 2014, 72, 84-94.	1.6	19

PAULA J MOUSER

#	Article	IF	CITATIONS
37	In situ transformation of ethoxylate and glycol surfactants by shale-colonizing microorganisms during hydraulic fracturing. ISME Journal, 2019, 13, 2690-2700.	4.4	18
38	Comparative geochemistry of flowback chemistry from the Utica/Point Pleasant and Marcellus formations. Chemical Geology, 2021, 564, 120041.	1.4	11
39	Toxicity of hydraulic fracturing wastewater from black shale natural-gas wells influenced by well maturity and chemical additives. Environmental Sciences: Processes and Impacts, 2021, 23, 621-632.	1.7	9
40	Modified Lipid Extraction Methods for Deep Subsurface Shale. Frontiers in Microbiology, 2017, 8, 1408.	1.5	8
41	Hydraulically Fractured Natural-Gas Well Microbial Communities Contain Genomic Halogenation and Dehalogenation Potential. Environmental Science and Technology Letters, 2019, 6, 585-591.	3.9	6
42	Seasonal changes predominant over manure application in driving dissolved organic matter shifts in agricultural runoff. Journal of Great Lakes Research, 2020, 46, 1570-1580.	0.8	6
43	Draft Genome Sequences of Marinobacter Strains Recovered from Utica Shale-Produced Fluids. Genome Announcements, 2018, 6, .	0.8	5
44	Draft Genome Sequences of Two Chemosynthetic Arcobacter Strains Isolated from Hydraulically Fractured Wells in Marcellus and Utica Shales. Genome Announcements, 2018, 6, .	0.8	5
45	MetFish: a Metabolomics Pipeline for Studying Microbial Communities in Chemically Extreme Environments. MSystems, 2021, 6, e0105820.	1.7	5
46	The fate and removal of pharmaceuticals and personal care products within wastewater treatment facilities discharging to the Great Bay Estuary. Water Environment Research, 2022, 94, e1680.	1.3	5
47	Temporal and Thermal Changes in Density and Viscosity of Marcellus Shale Produced Waters. Journal of Environmental Engineering, ASCE, 2015, 141, 06015006.	0.7	4
48	Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing. Environmental Sciences: Processes and Impacts, 2019, 21, 206-213.	1.7	4
49	More than a decade of hydraulic fracturing and horizontal drilling research. Environmental Sciences: Processes and Impacts, 2019, 21, 193-194.	1.7	3
50	Microbial lipid biomarkers detected in deep subsurface black shales. Environmental Sciences: Processes and Impacts, 2019, 21, 291-307.	1.7	2
51	Characterization of Antibiotic Resistance and Metal Homeostasis Genes in Midwest USA Agricultural Sediments. Water (Switzerland), 2020, 12, 2476.	1.2	2