Sergey Morozov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289684/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197-200.	13.7	18,948
2	Temperature-driven massless Kane fermions in HgCdTe crystals. Nature Communications, 2016, 7, 12576.	5.8	73
3	Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 <i>μ</i> m. Applied Physics Letters, 2017, 111, .	1.5	58
4	Temperature-Induced Topological Phase Transition in HgTe Quantum Wells. Physical Review Letters, 2018, 120, 086401.	2.9	43
5	Temperature-driven single-valley Dirac fermions in HgTe quantum wells. Physical Review B, 2017, 96, .	1.1	38
6	Study of lifetimes and photoconductivity relaxation in heterostructures with Hg x Cd1 â^' x Te/Cd y Hg1 âr' y Te quantum wells. Semiconductors, 2012, 46, 1362-1366.	0.2	34
7	Spectra and kinetics of THz photoconductivity in narrow-gap Hg _{1–<i>x</i>Cd<i>_x</i>Te (<i>x</i>< 0.2) epitaxial films. Semiconductor Science and Technology, 2013, 28, 125007.}	1.0	29
8	GaAsSb/GaAs strained structures with quantum wells for lasers with emission wavelength near 1.3 μm. Semiconductors, 2010, 44, 405-412.	0.2	27
9	Terahertz photoconductivity of double acceptors in narrow gap HgCdTe epitaxial films grown by molecular beam epitaxy on GaAs(013) and Si(013) substrates. Semiconductor Science and Technology, 2017, 32, 095007.	1.0	27
10	Anticrossing of Landau levels in HgTe/CdHgTe (013) quantum wells with an inverted band structure. JETP Letters, 2015, 100, 790-794.	0.4	26
11	Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor. Semiconductors, 2007, 41, 232-234.	0.2	24
12	Temperature-dependent terahertz spectroscopy of inverted-band three-layer InAs/GaSb/InAs quantum well. Physical Review B, 2018, 97, .	1.1	24
13	Electron transport and terahertz radiation detection in submicrometer-sized GaAs/AlGaAs field-effect transistors with two-dimensional electron gas. Physics of the Solid State, 2004, 46, 146-149.	0.2	23
14	Radiative recombination in narrow gap HgTe/CdHgTe quantum well heterostructures for laser applications. Journal of Physics Condensed Matter, 2018, 30, 495301.	0.7	22
15	Fundamental Limits to Far-Infrared Lasing in Auger-Suppressed HgCdTe Quantum Wells. ACS Photonics, 2020, 7, 98-104.	3.2	21
16	Temperature limitations for stimulated emission in 3–4 μm range due to threshold and non-threshold Auger recombination in HgTe/CdHgTe quantum wells. Applied Physics Letters, 2020, 117, 083103.	1.5	20
17	Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wells. Semiconductors, 2013, 47, 1438-1441.	0.2	18
18	Spectra of Persistent Photoconductivity in InAsâ^•AlSb Quantum-Well Heterostructures. Semiconductors, 2005, 39, 22.	0.2	17

#	Article	IF	CITATIONS
19	Coherent Emission in the Vicinity of 10 THz due to Auger-Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells. ACS Photonics, 2021, 8, 3526-3535.	3.2	17
20	Long-wavelength injection lasers based on Pb1–x Sn x Se alloys and their use in solid-state spectroscopy. Semiconductors, 2015, 49, 1623-1626.	0.2	16
21	Features of impurity-photoconductivity relaxation in boron-doped silicon. Semiconductors, 2012, 46, 1387-1391.	0.2	14
22	Terahertz imaging of Landau levels in HgTe-based topological insulators. Applied Physics Letters, 2016, 108, .	1.5	13
23	Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate. Technical Physics Letters, 2010, 36, 365-368.	0.2	11
24	Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Journal of Applied Physics, 2021, 129, .	1.1	11
25	Kinetics of terahertz photoconductivity in p-Ge under impurity breakdown conditions. Semiconductors, 2010, 44, 1476-1479.	0.2	10
26	Features of Photoluminescence of Double Acceptors in HgTe/CdHgTe Heterostructures with Quantum Wells in a Terahertz Range. JETP Letters, 2019, 109, 657-662.	0.4	10
27	The influence of P+, B+, and N+ ion implantation on the luminescence properties of the SiO2: nc-Si system. Physics of the Solid State, 2004, 46, 17-21.	0.2	9
28	Effect of Coalescence and of the Character of the Initial Oxide on the Photoluminescence of Ion-Synthesized Si Nanocrystals in SiO[sub 2]. Physics of the Solid State, 2005, 47, 13.	0.2	8
29	Giant negative photoconductivity of PbSnTe:In films with wavelength cutoff near 30 μm. Semiconductors, 2016, 50, 1684-1690.	0.2	8
30	On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation. Semiconductors, 2017, 51, 1531-1536.	0.2	8
31	Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30–70 meV bandgap. Journal of Physics Condensed Matter, 2019, 31, 425301.	0.7	8
32	Waveguide effect of GaAsSb quantum wells in a laser structure based on GaAs. Semiconductors, 2013, 47, 1475-1477.	0.2	7
33	Long-wavelength stimulated emission and carrier lifetimes in HgCdTe-based waveguide structures with quantum wells. Semiconductors, 2016, 50, 1651-1656.	0.2	7
34	Mid-IR stimulated emission in Hg(Cd)Te/CdHgTe quantum well structures up to 200 K due to suppressed Auger recombination. Laser Physics, 2021, 31, 015801.	0.6	7
35	Toward Peltier-cooled mid-infrared HgCdTe lasers: Analyzing the temperature quenching of stimulated emission at â^¼6 <i>1¼</i> m wavelength from HgCdTe quantum wells. Journal of Applied Physics, 2021, 130, .	1.1	7
36	Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures. Semiconductors, 2015, 49, 1605-1610.	0.2	6

#	Article	IF	CITATIONS
37	Mercury vacancies as divalent acceptors in Hg y Te1 – y /Cd x Hg1 – x Te structures with quantum wells. Semiconductors, 2016, 50, 1662-1668.	0.2	6
38	Investigation of HgCdTe waveguide structures with quantum wells for long-wavelength stimulated emission. Semiconductors, 2017, 51, 1557-1561.	0.2	6
39	Terahertz Photoluminescence of Double Acceptors in Bulky Epitaxial HgCdTe Layers and HgTe/CdHgTe Structures with Quantum Wells. Journal of Experimental and Theoretical Physics, 2018, 127, 1125-1129.	0.2	6
40	Effect of Features of the Band Spectrum on the Characteristics of Stimulated Emission in Narrow-Gap Heterostructures with HgCdTe Quantum Wells. Semiconductors, 2018, 52, 1375-1379.	0.2	6
41	Second-Harmonic Generation of Subterahertz Gyrotron Radiation by Frequency Doubling in InP:Fe and Its Application for Magnetospectroscopy of Semiconductor Structures. Semiconductors, 2019, 53, 1217-1221.	0.2	6
42	Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers. Nanomaterials, 2021, 11, 1855.	1.9	6
43	Experimental study of nonlinear mode mixing in dual-wavelength semiconductor lasers. Laser Physics, 2007, 17, 684-687.	0.6	5
44	Experimental Observation of Temperature-Driven Topological Phase Transition in HgTe/CdHgTe Quantum Wells. Condensed Matter, 2019, 4, 27.	0.8	5
45	Stimulated Emission at a Wavelength of 2.86 μ4m from In(Sb, As)/In(Ga, Al)As/GaAs Metamorphic Quantum Wells under Optical Pumping. JETP Letters, 2019, 110, 313-318.	0.4	5
46	Probing States of a Double Acceptor in CdHgTe Heterostructures via Optical Gating. JETP Letters, 2020, 111, 575-581.	0.4	5
47	Specific Growth Features of Nanostructures for Terahertz Quantum Cascade Lasers and Their Physical Properties. Semiconductors, 2020, 54, 1092-1095.	0.2	5
48	A multifrequency interband two-cascade laser. Semiconductors, 2007, 41, 1209-1213.	0.2	4
49	Difference-frequency generation in a butt-join diode laser. Semiconductors, 2009, 43, 208-211.	0.2	4
50	Determination of the heterojunction type in structures with GaAsSb/GaAs quantum wells with various antimony fractions by optical methods. Semiconductors, 2012, 46, 1376-1380.	0.2	4
51	Picosecond photoluminescence dynamics in an InGaAs/GaAs quantum-well heterostructure. Semiconductors, 2012, 46, 917-920.	0.2	4
52	Effect of the direct capture of holes with the emission of optical phonons on impurity-photoconductivity relaxation in p-Si:B. Semiconductors, 2015, 49, 187-190.	0.2	4
53	Calculation of Multiply Charged States of Impurity-Defect Centers in Epitaxial Hg1 –xCdxTe Layers. Semiconductors, 2018, 52, 1369-1374.	0.2	4
54	Study of the Auger Recombination Energy Threshold in a Series of Waveguide Heterostructures with HgTe/Cd0.7Hg0.3Te QWs Near 14 \hat{l} 4m. Semiconductors, 2019, 53, 1154-1157.	0.2	4

#	Article	IF	CITATIONS
55	Phase Diagrams of Thin Disordered Films Based on HTSC YBa2Cu3O7–Âx in External Magnetic Fields. Physics of the Solid State, 2019, 61, 1523-1528.	0.2	4
56	Terahertz Spectroscopy of Two-Dimensional Semimetal in Three-Layer InAs/GaSb/InAs Quantum Well. JETP Letters, 2019, 109, 96-101.	0.4	4
57	Synthesis by Molecular Beam Epitaxy and Properties of InGaN Nanostructures of Branched Morphology on a Silicon Substrate. Technical Physics Letters, 2019, 45, 1111-1113.	0.2	4
58	Calculation of Wave Functions of Resonant Acceptor States in Narrow-Gap CdHgTe Compounds. Semiconductors, 2020, 54, 827-831.	0.2	4
59	Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors, 2020, 54, 1069-1074.	0.2	4
60	Resonance detection of terahertz radiation in submicrometer field-effect GaAs/AlGaAs transistors with two-dimensional electron gas. Semiconductors, 2009, 43, 528-531.	0.2	3
61	Relaxation kinetics of impurity photoconductivity in p-Si:B with various levels of doping and degrees of compensation in high electric fields. Semiconductors, 2013, 47, 1461-1464.	0.2	3
62	Observation of dynamics of impurity photoconductivity in n-GaAs caused by electron cooling. Semiconductors, 2015, 49, 113-117.	0.2	3
63	Stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on GaAs and Ge/Si(001) substrates. Semiconductors, 2016, 50, 1435-1438.	0.2	3
64	Lowering the Lasing Threshold by Doping in Mid-Infrared Lasers Based on HgCdTe with HgTe Quantum Wells. Semiconductors, 2018, 52, 1221-1224.	0.2	3
65	Experimental Observation of s-Component of Superconducting Pairing in Thin Disordered HTSC Films Based on YBCO. Physics of the Solid State, 2020, 62, 1598-1603.	0.2	3
66	Synthesis of Morphologically Developed InGaN Nanostructures on Silicon: Influence of the Substrate Temperature on the Morphological and Optical Properties. Semiconductors, 2020, 54, 1075-1077.	0.2	3
67	Photothermal Ionization Spectroscopy of Mercury Vacancies in HgCdTe Epitaxial Films. JETP Letters, 2021, 113, 402-408.	0.4	3
68	Formation of Short Microwave Pulses by Laser-Driven GaAs Switch with Sub-Nanosecond Transient Response. , 2021, , .		3
69	Photoelectric Properties and Electroluminescence of p–i–n Diodes Based on GeSiâ^•Si Heterostructures with Self-Assembled Nanoclusters. Physics of the Solid State, 2005, 47, 22.	0.2	2
70	Frequency shift in a system of two laser diodes. Semiconductors, 2007, 41, 1364-1368.	0.2	2
71	Diagnostics of quantum cascade structures by optical methods in the near infrared region. Semiconductors, 2012, 46, 1411-1414.	0.2	2
72	Observation of topological phase transition by terahertz photoconductivity in HgTeâ€based transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 534-537.	0.8	2

#	Article	IF	CITATIONS
73	Evolution of the Impurity Photoconductivity in CdHgTe Epitaxial Films with Temperature. Semiconductors, 2019, 53, 1266-1271.	0.2	2
74	Continuous-Wave Stimulated Emission in the 10–14-μm Range under Optical Excitation in HgCdTe/CdHgTe-QW Structures with Quasirelativistic Dispersion. Semiconductors, 2020, 54, 1371-1375.	0.2	2
75	Calculation of discrete and resonant states of Coulomb acceptor in HgCdTe alloys. Semiconductor Science and Technology, 2022, 37, 025003.	1.0	2
76	Calculation of the Resonance States of Coulomb Acceptors in Zero-Gap Semiconductors. Semiconductors, 2021, 55, 537.	0.2	2
77	Application of the Scattering Matrix Method for Calculation of Impurity States in Semiconductor Structures. Technical Physics Letters, 2021, 47, 360-363.	0.2	2
78	Spectra of Double Acceptors in Layers of Barriers and Quantum Wells of HgTe/CdHgTe Heterostructures. Semiconductors, 2019, 53, 1198-1202.	0.2	1
79	Investigation of the Photosensitivity of Narrow-Gap and Gapless HgCdTe Solid Solutions in the Terahertz and Sub-Terahertz Range. Semiconductors, 2020, 54, 1096-1102.	0.2	1
80	Photoluminescence Spectra of InAs/GaInSb/InAs Quantum Wells in the Mid-Infrared Region. Semiconductors, 2020, 54, 1119-1122.	0.2	1
81	Express Characterization of the HgCdTe/CdHgTe Quantum Well Waveguide Heterostructures with the Quasi-Relativistic Carrier Dispersion Law by Room-Temperature Photoluminescence Spectroscopy. Technical Physics Letters, 2021, 47, 154-157.	0.2	1
82	Arsenic Doping Upon the Deposition of CdTe Layers from Dimethylcadmium and Diisopropyltellurium. Semiconductors, 2021, 55, 7-13.	0.2	1
83	3.3 THz Quantum Cascade Laser Based on a Three GaAs/AlGaAs Quantum-Well Active Module with an Operating Temperature above 120 K. Semiconductors, 2022, 56, 71-77.	0.2	1
84	Observation of the Middle-Infrared Emission from Semiconductor Lasers Generating Two Frequency Lines in the Near-Infrared Region of the Spectrum. Semiconductors, 2005, 39, 139.	0.2	0
85	Study of interband cascade lasers with tunneling transition. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 96-99.	0.1	0
86	Generation of self-sustained pulsations of radiation in InGaAs/GaAs/InGaP quantum-well lasers. Journal of Applied Spectroscopy, 2007, 74, 589-593.	0.3	0
87	Intracavity difference-frequency generation in GaAS/InGaAs/InGaP butt-joint diode lasers. , 2008, , .		0
88	Evolution of the photoresponse time of the GaAs/AlGaAs cyclotron resonance quantum Hall effect detector. Semiconductors, 2009, 43, 223-227.	0.2	0
89	Resonance detection of terahertz radiation in nanometer field-effect transistors with two-dimensional electron gas. , 2010, , .		0
90	Spectral-kinetic properties of heterostructures with GaAsSb/InGaAs/GaAs-based quantum wells emitting in the range of 1.0–1.2 μm. Semiconductors, 2013, 47, 1504-1507.	0.2	0

Sergey Morozov

#	Article	IF	CITATIONS
91	Investigation of GaAs/AlGaAs quantum cascade structures by optical methods based on hot luminescence in the near-infrared range. Semiconductors, 2014, 48, 1463-1466.	0.2	0
92	ABOUT THE IMPURITY EFFECT IN THE SiO ₂ : NC - Si SYSTEM. , 2003, , .		0
93	Investigation of Stimulated Emission from HgTe/CdHgTe Quantum-Well Heterostructures in the 3–5 μm Atmospheric Transparency Window. Semiconductors, 2020, 54, 1365-1370.	0.2	0
94	Generation of Terahertz Radiation in InP:Fe Crystals Due to Second-Order Lattice Nonlinearity. Semiconductors, 2021, 55, 785-789.	0.2	0
95	Calculation of the Temperature Dependence of the Coulomb-Acceptor State Energy in a Narrow-Gap HgCdTe Solid Solution. Semiconductors, 2021, 55, 907-913.	0.2	Ο
96	Effect of Internal Optical Losses on the Generation of Mid-IR Stimulated Emission in Waveguide Heterostructures with HgCdTe/CdHgTe Quantum Wells. Semiconductors, 2021, 55, 899-902.	0.2	0
97	Quantum-Cascade Laser with Radiation Emission through a Textured Layer. Semiconductors, 2022, 56, 1-4.	0.2	0