Ichiro Tamaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival, growth and reproduction of sprouted individuals of star magnolia two years after clearcutting. Journal of Forest Research, 2021, 26, 26-31.	1.4	0
2	Phylogeography at the crossroad: Pleistocene range expansion throughout the Mediterranean and backâ€colonization from the Canary Islands in the legume Bituminaria bituminosa. Journal of Biogeography, 2021, 48, 1622-1634.	3.0	8
3	Genetic Distinctiveness but Low Diversity Characterizes Rear-Edge Thuja standishii (Gordon) Carr. (Cupressaceae) Populations in Southwest Japan. Diversity, 2021, 13, 185.	1.7	4
4	Reciprocal crosses between Magnolia stellata and Magnolia kobus do not show significant reproductive barriers in seed formation. Plant Species Biology, 2021, 36, 596.	1.0	0
5	Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan. Journal of Plant Research, 2021, 134, 933-946.	2.4	5
6	Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. International Journal of Molecular Sciences, 2021, 22, 7237.	4.1	7
7	Pre-quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region. Molecular Phylogenetics and Evolution, 2020, 143, 106693.	2.7	26
8	Genetic diversity, structure, and demography of <i>Pandanus boninensis</i> (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: Comparison between young and old islands. Molecular Ecology, 2020, 29, 1050-1068.	3.9	15
9	Patterns of genotype variation and demographic history in <i>Lindera glauca</i> (Lauraceae), an apomictâ€containing dioecious forest tree. Journal of Biogeography, 2020, 47, 2002-2016.	3.0	8
10	Environmental pressure rather than ongoing hybridization is responsible for an altitudinal cline in the morphologies of two oaks. Journal of Plant Ecology, 2020, 13, 413-422.	2.3	2
11	Approximate Bayesian computation analysis of EST-associated microsatellites indicates that the broadleaved evergreen tree Castanopsis sieboldii survived the Last Glacial Maximum in multiple refugia in Japan. Heredity, 2019, 122, 326-340.	2.6	22
12	Population genetic structure and demography of Magnolia kobus: variety borealis is not supported genetically. Journal of Plant Research, 2019, 132, 741-758.	2.4	11
13	The origin of wild populations of Toxicodendron succedaneum on mainland Japan revealed by genetic variation in chloroplast and nuclear DNA. Journal of Plant Research, 2018, 131, 225-238.	2.4	14
14	Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting. Landscape and Ecological Engineering, 2018, 14, 269-276.	1.5	4
15	Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity, 2017, 119, 95-106.	2.6	47
16	Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics and Genomes, 2017, 13, 1.	1.6	22
17	Reduced incompatibility in the production of second generation hybrids between twoMagnoliaspecies revealed by Bayesian gene dispersal modeling. American Journal of Botany, 2017, 104, 1546-1555.	1.7	3
18	Population demographic history of a temperate shrub, Rhododendron weyrichii (Ericaceae), on continental islands of Japan and South Korea. Ecology and Evolution, 2016, 6, 8800-8810.	1.9	15

Ιςμικό Ταμακί

#	Article	IF	CITATIONS
19	Development of Microsatellite Markers for the Clonal ShrubOrixa japonica(Rutaceae) Using 454 Sequencing. Applications in Plant Sciences, 2016, 4, 1600066.	2.1	0
20	Thinning operations increase the demographic performance of the rare subtree species Magnolia stellata in a suburban forest landscape. Landscape and Ecological Engineering, 2016, 12, 179-186.	1.5	8
21	Genetic diversity and structure of remnant Magnolia stellata populations affected by anthropogenic pressures and a conservation strategy for maintaining their current genetic diversity. Conservation Genetics, 2016, 17, 715-725.	1.5	10
22	Genetic variation and population demography of the landrace population of Camellia sinensis in Kasuga, Gifu Prefecture, Japan. Genetic Resources and Crop Evolution, 2016, 63, 823-831.	1.6	11
23	Seedling survival and growth during the 2 years following seed germination of Magnolia stellata, a threatened subcanopy tree, after clearcutting. Journal of Forest Research, 2015, 20, 415-419.	1.4	6
24	Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus) Tj ETQq0 0 0 rgBT /Overloo Genomes, 2014, 10, 989-999.	ck 10 Tf 50 1.6) 547 Td (Cy 20
25	Regeneration of <i>Magnolia stellata</i> by Sprouting and Seedling Establishment during the First Year after Clearcutting. Journal of the Japanese Forest Society, 2014, 96, 193-199.	0.2	4
26	Differences in Seed Formation and Germination Rates between Reciprocal Interspecific Crosses in <i>Magnolia stellata</i> and <i>M. salicifolia</i> . Journal of the Japanese Forest Society, 2014, 96, 200-205.	0.2	2
27	Asymmetric introgression between Magnolia stellata and M. salicifolia at a site where the two species grow sympatrically. Tree Genetics and Genomes, 2013, 9, 1005-1015.	1.6	17
28	Interpopulation variation in mating system and lateâ€stage inbreeding depression in <i>Magnolia stellata</i> . Molecular Ecology, 2009, 18, 2365-2374.	3.9	17
29	Estimation of outcrossing rates at hierarchical levels of fruits, individuals, populations and species in Magnolia stellata. Heredity, 2009, 102, 381-388.	2.6	22
30	Genetic variation and differentiation in populations of a threatened tree, Magnolia stellata: factors influencing the level of within-population genetic variation. Heredity, 2008, 100, 415-423.	2.6	20
31	Relationships between flowering phenology and female reproductive success in the Japanese tree species <i>Magnolia stellata</i> . Botany, 2008, 86, 248-258.	1.0	13