Ichiro Tamaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289416/publications.pdf

Version: 2024-02-01

687363 839539 31 363 13 18 citations h-index g-index papers 31 31 31 417 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity, 2017, 119, 95-106.	2.6	47
2	Pre-quaternary diversification and glacial demographic expansions of Cardiocrinum (Liliaceae) in temperate forest biomes of Sino-Japanese Floristic Region. Molecular Phylogenetics and Evolution, 2020, 143, 106693.	2.7	26
3	Estimation of outcrossing rates at hierarchical levels of fruits, individuals, populations and species in Magnolia stellata. Heredity, 2009, 102, 381-388.	2.6	22
4	Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics and Genomes, 2017, 13, 1.	1.6	22
5	Approximate Bayesian computation analysis of EST-associated microsatellites indicates that the broadleaved evergreen tree Castanopsis sieboldii survived the Last Glacial Maximum in multiple refugia in Japan. Heredity, 2019, 122, 326-340.	2.6	22
6	Genetic variation and differentiation in populations of a threatened tree, Magnolia stellata: factors influencing the level of within-population genetic variation. Heredity, 2008, 100, 415-423.	2.6	20
7	Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus) Tj ETQq1 1 0.784314 rgBT (Genomes, 2014, 10, 989-999.	/Overlock :	10 Tf 50 503 20
8	Interpopulation variation in mating system and lateâ€stage inbreeding depression in <i>Magnolia stellata</i> . Molecular Ecology, 2009, 18, 2365-2374.	3.9	17
9	Asymmetric introgression between Magnolia stellata and M. salicifolia at a site where the two species grow sympatrically. Tree Genetics and Genomes, 2013, 9, 1005-1015.	1.6	17
10	Population demographic history of a temperate shrub, Rhododendron weyrichii (Ericaceae), on continental islands of Japan and South Korea. Ecology and Evolution, 2016, 6, 8800-8810.	1.9	15
11	Genetic diversity, structure, and demography of <i>Pandanus boninensis</i> (Pandanaceae) with sea drifted seeds, endemic to the Ogasawara Islands of Japan: Comparison between young and old islands. Molecular Ecology, 2020, 29, 1050-1068.	3.9	15
12	The origin of wild populations of Toxicodendron succedaneum on mainland Japan revealed by genetic variation in chloroplast and nuclear DNA. Journal of Plant Research, 2018, 131, 225-238.	2.4	14
13	Relationships between flowering phenology and female reproductive success in the Japanese tree species <i>Magnolia stellata</i> . Botany, 2008, 86, 248-258.	1.0	13
14	Genetic variation and population demography of the landrace population of Camellia sinensis in Kasuga, Gifu Prefecture, Japan. Genetic Resources and Crop Evolution, 2016, 63, 823-831.	1.6	11
15	Population genetic structure and demography of Magnolia kobus: variety borealis is not supported genetically. Journal of Plant Research, 2019, 132, 741-758.	2.4	11
16	Genetic diversity and structure of remnant Magnolia stellata populations affected by anthropogenic pressures and a conservation strategy for maintaining their current genetic diversity. Conservation Genetics, 2016, 17, 715-725.	1.5	10
17	Thinning operations increase the demographic performance of the rare subtree species Magnolia stellata in a suburban forest landscape. Landscape and Ecological Engineering, 2016, 12, 179-186.	1.5	8
18	Patterns of genotype variation and demographic history in <i>Lindera glauca</i> (Lauraceae), an apomictâ€containing dioecious forest tree. Journal of Biogeography, 2020, 47, 2002-2016.	3.0	8

#	Article	IF	CITATIONS
19	Phylogeography at the crossroad: Pleistocene range expansion throughout the Mediterranean and backâ€colonization from the Canary Islands in the legume Bituminaria bituminosa. Journal of Biogeography, 2021, 48, 1622-1634.	3.0	8
20	Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. International Journal of Molecular Sciences, 2021, 22, 7237.	4.1	7
21	Seedling survival and growth during the 2 years following seed germination of Magnolia stellata, a threatened subcanopy tree, after clearcutting. Journal of Forest Research, 2015, 20, 415-419.	1.4	6
22	Different population size change and migration histories created genetic diversity of three oaks in Tokai region, central Japan. Journal of Plant Research, 2021, 134, 933-946.	2.4	5
23	Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting. Landscape and Ecological Engineering, 2018, 14, 269-276.	1.5	4
24	Genetic Distinctiveness but Low Diversity Characterizes Rear-Edge Thuja standishii (Gordon) Carr. (Cupressaceae) Populations in Southwest Japan. Diversity, 2021, 13, 185.	1.7	4
25	Regeneration of <i>Magnolia stellata</i> by Sprouting and Seedling Establishment during the First Year after Clearcutting. Journal of the Japanese Forest Society, 2014, 96, 193-199.	0.2	4
26	Reduced incompatibility in the production of second generation hybrids between twoMagnoliaspecies revealed by Bayesian gene dispersal modeling. American Journal of Botany, 2017, 104, 1546-1555.	1.7	3
27	Environmental pressure rather than ongoing hybridization is responsible for an altitudinal cline in the morphologies of two oaks. Journal of Plant Ecology, 2020, 13, 413-422.	2.3	2
28	Differences in Seed Formation and Germination Rates between Reciprocal Interspecific Crosses in & lt;i>Magnolia stellata and <i>M. salicifolia</i> . Journal of the Japanese Forest Society, 2014, 96, 200-205.	0.2	2
29	Development of Microsatellite Markers for the Clonal ShrubOrixa japonica(Rutaceae) Using 454 Sequencing. Applications in Plant Sciences, 2016, 4, 1600066.	2.1	0
30	Survival, growth and reproduction of sprouted individuals of star magnolia two years after clearcutting. Journal of Forest Research, 2021, 26, 26-31.	1.4	0
31	Reciprocal crosses between Magnolia stellata and Magnolia kobus do not show significant reproductive barriers in seed formation. Plant Species Biology, 2021, 36, 596.	1.0	0