
## EurÃ-dice Honorio Coronado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8289103/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.                                                                                   | 12.6 | 1,443     |
| 2  | Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.                                                                                       | 12.6 | 873       |
| 3  | Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.                                                                                       | 27.8 | 796       |
| 4  | Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.                                                                     | 7.3  | 487       |
| 5  | Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate.<br>Biogeosciences, 2012, 9, 2203-2246.                   | 3.3  | 487       |
| 6  | Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.                                          | 12.6 | 443       |
| 7  | Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.                                                          | 3.3  | 373       |
| 8  | Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.                                                            | 9.5  | 265       |
| 9  | Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.                                                             | 3.3  | 251       |
| 10 | Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946. | 5.8  | 248       |
| 11 | Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.                                                                       | 12.8 | 214       |
| 12 | Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.                                                                  | 4.9  | 201       |
| 13 | Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.                                                                        | 12.6 | 198       |
| 14 | Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids.<br>Geochimica Et Cosmochimica Acta, 2017, 208, 285-301.     | 3.9  | 177       |
| 15 | The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental<br>Research Letters, 2014, 9, 124017.                         | 5.2  | 155       |
| 16 | Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.                                                                      | 4.5  | 143       |
| 17 | Estimating the global conservation status of more than 15,000 Amazonian tree species. Science<br>Advances, 2015, 1, e1500936.                                  | 10.3 | 122       |
| 18 | Vegetation development in an Amazonian peatland. Palaeogeography, Palaeoclimatology,<br>Palaeoecology, 2013, 374, 242-255.                                     | 2.3  | 116       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Variation in stem mortality rates determines patterns of aboveâ€ground biomass in<br><scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change<br>Biology, 2016, 22, 3996-4013.                          | 9.5  | 116       |
| 20 | Species Distribution Modelling: Contrasting presence-only models with plot abundance data.<br>Scientific Reports, 2018, 8, 1003.                                                                                                               | 3.3  | 113       |
| 21 | Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia, 2007, 152, 495-504.                                                                                                                                              | 2.0  | 87        |
| 22 | Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 2008, 8, 21-29.                                                                                                                                    | 1.0  | 82        |
| 23 | Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography,<br>2018, 27, 1366-1383.                                                                                                                  | 5.8  | 78        |
| 24 | Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.                                                           | 9.5  | 78        |
| 25 | Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?.<br>Global Change Biology, 2009, 15, 2418-2430.                                                                                           | 9.5  | 74        |
| 26 | Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.                                                                                                                                        | 4.1  | 72        |
| 27 | Threats to intact tropical peatlands and opportunities for their conservation. Conservation Biology, 2017, 31, 1283-1292.                                                                                                                      | 4.7  | 70        |
| 28 | Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.                                                                                                                             | 6.4  | 63        |
| 29 | Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodiversity and Conservation, 2007, 16, 659-677. | 2.6  | 62        |
| 30 | Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.                                                                                                                                    | 12.8 | 62        |
| 31 | The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.                                                                                                                                                      | 5.8  | 62        |
| 32 | Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.                                                                                                                       | 12.8 | 59        |
| 33 | Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for<br>Palaeohydrological Reconstruction. Microbial Ecology, 2014, 68, 284-298.                                                                     | 2.8  | 57        |
| 34 | Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.                                                                                                                                         | 3.3  | 53        |
| 35 | Low Phylogenetic Beta Diversity and Geographic Neoâ€endemism in Amazonian Whiteâ€sand Forests.<br>Biotropica, 2016, 48, 34-46.                                                                                                                 | 1.6  | 52        |
| 36 | Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists.<br>Trends in Ecology and Evolution, 2017, 32, 258-267.                                                                                          | 8.7  | 52        |

## EurÃdice Honorio Coronado

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences, 2009, 6, 2719-2731.                                                                                                 | 3.3  | 49        |
| 38 | Can timber provision from Amazonian production forests be sustainable?. Environmental Research<br>Letters, 2019, 14, 064014.                                                                                      | 5.2  | 47        |
| 39 | Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.                                                                                      | 2.4  | 45        |
| 40 | Carbon recovery dynamics following disturbance by selective logging in Amazonian forests. ELife, 2016, 5, .                                                                                                       | 6.0  | 45        |
| 41 | The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.                                                                           | 5.3  | 44        |
| 42 | The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru:<br>measurements and implications for hydrological function. Hydrological Processes, 2014, 28, 3373-3387.                  | 2.6  | 43        |
| 43 | Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological<br>Sciences, 2016, 283, 20161587.                                                                            | 2.6  | 43        |
| 44 | Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional betaâ€diversity. Ecography, 2018, 41, 1256-1269.                                                  | 4.5  | 35        |
| 45 | Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.                                                                               | 7.8  | 32        |
| 46 | Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.                                                                                                                    | 3.3  | 28        |
| 47 | Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.                                                                                                                       | 7.8  | 27        |
| 48 | <i>Ficus insipida</i> subsp. <i>insipida</i> (Moraceae) reveals the role of ecology in the<br>phylogeography of widespread Neotropical rain forest tree species. Journal of Biogeography, 2014, 41,<br>1697-1709. | 3.0  | 25        |
| 49 | Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. Journal of Ecology, 2019, 107, 696-710.                                                                      | 4.0  | 25        |
| 50 | Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nature<br>Geoscience, 2022, 15, 369-374.                                                                                    | 12.9 | 25        |
| 51 | Identifying and Quantifying the Abundance of Economically Important Palms in Tropical Moist Forest<br>Using UAV Imagery. Remote Sensing, 2020, 12, 9.                                                             | 4.0  | 24        |
| 52 | The Geochemistry of Amazonian Peats. Wetlands, 2014, 34, 905-915.                                                                                                                                                 | 1.5  | 23        |
| 53 | Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.                                                                                                              | 3.2  | 23        |
| 54 | Continuous human presence without extensive reductions in forest cover over the past 2500 years in an aseasonal Amazonian rainforest. Journal of Quaternary Science, 2018, 33, 369-379.                           | 2.1  | 21        |

## EurÃdice Honorio Coronado

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aboveground forest biomass varies across continents, ecological zones and successional stages:<br>refined IPCC default values for tropical and subtropical forests. Environmental Research Letters,<br>2022, 17, 014047.          | 5.2 | 21        |
| 56 | Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the<br>Pastaza-Marañón river basin of the Peruvian Amazon. Mitigation and Adaptation Strategies for Global<br>Change, 2019, 24, 645-668. | 2.1 | 20        |
| 57 | Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While<br>Traits Control Demography. Frontiers in Earth Science, 2019, 7, .                                                                | 1.8 | 19        |
| 58 | Making forest data fair and open. Nature Ecology and Evolution, 2022, 6, 656-658.                                                                                                                                                 | 7.8 | 18        |
| 59 | Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and<br>Biogeography, 2022, 31, 1571-1588.                                                                                           | 5.8 | 17        |
| 60 | Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests.<br>Environmental Research Letters, 2021, 16, 074048.                                                                          | 5.2 | 15        |
| 61 | Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae. Annals of<br>Botany, 2017, 120, 819-832.                                                                                                         | 2.9 | 13        |
| 62 | Comparative phylogeography of five widespread tree species: Insights into the history of western<br>Amazonia. Ecology and Evolution, 2019, 9, 7333-7345.                                                                          | 1.9 | 13        |
| 63 | Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics. PeerJ, 2020, 8, e10283.                                                                     | 2.0 | 13        |
| 64 | Assessing the Ability of Chloroplast and Nuclear DNA Gene Markers to Verify the Geographic Origin of<br>Jatoba (Hymenaea courbaril L.) Timber. Journal of Heredity, 2018, 109, 543-552.                                           | 2.4 | 11        |
| 65 | Development of nuclear and plastid SNP markers for genetic studies of Dipteryx tree species in Amazonia. Conservation Genetics Resources, 2019, 11, 333-336.                                                                      | 0.8 | 11        |
| 66 | Predicting the geographic origin of Spanish Cedar (Cedrela odorata L.) based on DNA variation.<br>Conservation Genetics, 2020, 21, 625-639.                                                                                       | 1.5 | 11        |
| 67 | Optimal strategies for ecosystem services provision in Amazonian production forests. Environmental Research Letters, 2019, 14, 124090.                                                                                            | 5.2 | 9         |
| 68 | Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees.<br>Conservation Genetics Resources, 2019, 11, 329-331.                                                                             | 0.8 | 8         |
| 69 | EL EL SUMIDERO DE CARBONO EN LOS BOSQUES PRIMARIOS AMAZÓNICOS ES UNA OPORTUNIDAD PARA<br>LOGRAR LA SOSTENIBILIDAD DE SU CONSERVACIÓN. Folia Amazónica, 2019, 27, 101-109.                                                         | 0.1 | 8         |
| 70 | The phylogeography of two disjunct Neotropical Ficus (Moraceae) species reveals contrasted<br>histories between the Amazon and the Atlantic Forests. Botanical Journal of the Linnean Society, 2017,<br>185, 272-289.             | 1.6 | 7         |
| 71 | Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia.<br>Conservation Genetics Resources, 2019, 11, 341-343.                                                                             | 0.8 | 7         |
| 72 | Patterns and drivers of development in a west Amazonian peatland during the late Holocene.<br>Quaternary Science Reviews, 2020, 230, 106168.                                                                                      | 3.0 | 7         |

| #  | Article                                                                                                                                                                                                                             | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 73 | SNP Markers as a Successful Molecular Tool for Assessing Species Identity and Geographic Origin of<br>Trees in the Economically Important South American Legume Genus <i>Dipteryx</i> . Journal of<br>Heredity, 2020, 111, 346-356. | 2.4              | 6         |
| 74 | From plots to policy: How to ensure longâ€ŧerm forest plot data supports environmental management<br>in intact tropical forest landscapes. Plants People Planet, 2021, 3, 229-237.                                                  | 3.3              | 6         |
| 75 | Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests. Nature<br>Sustainability, 2022, 5, 479-487.                                                                                                     | 23.7             | 6         |
| 76 | Forest Fire History in Amazonia Inferred From Intensive Soil Charcoal Sampling and Radiocarbon Dating. Frontiers in Forests and Global Change, 2022, 5, .                                                                           | 2.3              | 6         |
| 77 | Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.                                                                                                         | 1.6              | 5         |
| 78 | Molecular evidence for three genetic species of Dipteryx in the Peruvian Amazon. Genetica, 2020, 148, 1-11.                                                                                                                         | 1.1              | 5         |
| 79 | Confronting ethical challenges in long-term research programs in the tropics. Biological Conservation, 2021, 255, 108933.                                                                                                           | 4.1              | 5         |
| 80 | EVALUACIÓN DE LAS TÉCNICAS DE APROVECHAMIENTO DE FRUTOS DE AGUAJE (Mauritia Flexuosa L.f.) EN<br>EL DISTRITO DE JENARO HERRERA, LORETO, PERÚ. Folia Amazónica, 2019, 27, 131-150.                                                   | 0.1              | 5         |
| 81 | Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species. Conservation Genetics Resources, 2019, 11, 337-339.                                              | 0.8              | 4         |
| 82 | Nuclear and plastid SNP markers for tracing Cedrela timber in the tropics. Conservation Genetics Resources, 2020, 12, 239-244.                                                                                                      | 0.8              | 4         |
| 83 | IMPACTO DE LA CONSTRUCCIÓN DE LA CARRETERA IQUITOS-SARAMIRIZA SOBRE LOS BOSQUES Y TURBERAS<br>DEL RÃO TIGRE, LORETO, PERÊ. Folia Amazónica, 2021, 29, 65-87.                                                                        | 0.1              | 3         |
| 84 | ANÃLISIS MORFOMÉTRICO DE LAS ESPECIES DE Dipteryx EN LA AMAZONÃA PERUANA. Folia Amazónica, 201<br>25, 101.                                                                                                                          | 7 <sub>0.1</sub> | 2         |
| 85 | FLORISTIC INVENTORY OF ONE HECTARE OF PALM-DOMINATED CREEK FOREST IN JENARO HERRERA, PERU.<br>Edinburgh Journal of Botany, 2012, 69, 259-280.                                                                                       | 0.4              | 1         |
| 86 | EVALUACIÓN DE LA VARIABILIDAD GENÉTICA DE SHIHUAHUACO Dipteryx ferrea (Ducke) Ducke EN LA<br>AMAZONÃA PERUANA, MEDIANTE MARCADORES MICROSATÉLITES. Folia Amazónica, 2019, 28, 53-64.                                                | 0.1              | 1         |
| 87 | HUELLA DE CARBONO DE LA VENTA DEL FRUTO Y LA PRODUCCIÓN DE BEBIDAS Y HELADOS DE AGUAJE<br>(Mauritia flexuosa L.f.) EN EL DEPARTAMENTO DE UCAYALI, PERÚ. Folia AmazÃ3nica, 2021, 29, 23-36.                                          | 0.1              | Ο         |