
Alexander N Suvorov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8288165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4658-4663.	3.3	861
2	Genome Sequence of a Nephritogenic and Highly Transformable M49 Strain of <i>Streptococcus pyogenes</i> . Journal of Bacteriology, 2008, 190, 7773-7785.	1.0	122
3	Probiotics at War Against Viruses: What Is Missing From the Picture?. Frontiers in Microbiology, 2020, 11, 1877.	1.5	70
4	Gut Microbiota, Probiotics, and Human Health. Bioscience of Microbiota, Food and Health, 2013, 32, 81-91.	0.8	39
5	Transformation of group A streptococci by electroporation. FEMS Microbiology Letters, 1988, 56, 95-99.	0.7	29
6	What Is Wrong with Enterococcal Probiotics?. Probiotics and Antimicrobial Proteins, 2020, 12, 1-4.	1.9	29
7	Autoprobiotics as an Approach for Restoration of Personalised Microbiota. Frontiers in Microbiology, 2018, 9, 1869.	1.5	28
8	Structure of plantaricin locus of <i>Lactobacillus plantarum</i> 8P-A3. Beneficial Microbes, 2011, 2, 255-261.	1.0	24
9	Influence of Different Probiotic Lactic Acid Bacteria on Microbiota and Metabolism of Rats with Dysbiosis. Bioscience of Microbiota, Food and Health, 2013, 32, 41-49.	0.8	23
10	Comparison of Differential Flavor Metabolites in Meat of Lubei White Goat, Jining Gray Goat and Boer Goat. Metabolites, 2019, 9, 176.	1.3	20
11	Structural Heterogeneity of the Streptococcal C5a Peptidase Gene in Streptococcus pyogenes. Journal of Bacteriology, 2002, 184, 6384-6386.	1.0	14
12	Development of experimental pneumococcal vaccine for mucosal immunization. PLoS ONE, 2019, 14, e0218679.	1.1	14
13	Nasal immunization with recombinant chimeric pneumococcal protein and cell wall from immunobiotic bacteria improve resistance of infant mice to Streptococcus pneumoniae infection. PLoS ONE, 2018, 13, e0206661.	1.1	13
14	Construction of a Streptococcus pyogenes recA mutant via insertional inactivation, and cloning and sequencing of the complete recA gene. Gene, 1995, 162, 59-62.	1.0	12
15	Molecular analysis of clinical group B streptococcal strains by use of α and β gene probes. FEMS Immunology and Medical Microbiology, 1997, 17, 149-154.	2.7	11
16	Development of Immunoreagents for Diagnostics of CagAâ€Positive <i>Helicobacter pylori</i> Infections. Helicobacter, 2010, 15, 193-200.	1.6	11
17	Recent Advances and Future Perspective in Microbiota and Probiotics. BioMed Research International, 2015, 2015, 1-2.	0.9	10
18	Construction of the Enterococcal Strain Expressing Immunogenic Fragment of SARS-Cov-2 Virus. Frontiers in Pharmacology, 2021, 12, 807256.	1.6	10

#	Article	IF	CITATIONS
19	Increased kasugamycin sensitivity in Escherichia coli caused by the presence of an inducible erythromycin resistance (erm) gene of Streptococcus pyogenes. Molecular Genetics and Genomics, 1988, 215, 152-155.	2.4	9
20	Replication origin ofStreptococcus pyogenes, organization and cloning in heterologous systems. FEMS Microbiology Letters, 2000, 189, 293-297.	0.7	9
21	Draft Genome Sequence of Enterococcus faecium Strain 58m, Isolated from Intestinal Tract Content of a Woolly Mammoth, <i>Mammuthus primigenius</i> . Genome Announcements, 2016, 4, .	0.8	9
22	Role of arginine deiminase in thymic atrophy during experimental <i>Streptococcus pyogenes</i> infection. Scandinavian Journal of Immunology, 2019, 89, e12734.	1.3	9
23	Physical and genetic chromosomal maps ofStreptococcus agalactiae, serotypes II and III; rRNA operon organization. FEMS Microbiology Letters, 1998, 167, 33-39.	0.7	8
24	Bacteroides fragilis is a potential marker of effective microbiota transplantation in acute graft-versus-host disease treatment. Cellular Therapy and Transplantation, 2020, 9, 47-59.	0.2	7
25	Evaluation in Mouse Model of Combined Virus-bacterial Vaccine Based on Attenuated Influenza A(H7N3) Virus and the Group B Streptococcus Recombinant Polypeptides. Open Microbiology Journal, 2016, 10, 168-175.	0.2	7
26	A Live Probiotic Vaccine Prototype Based on Conserved Influenza a Virus Antigens Protect Mice against Lethal Influenza Virus Infection. Biomedicines, 2021, 9, 1515.	1.4	7
27	Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. International Journal of Molecular Sciences, 2022, 23, 6837.	1.8	7
28	lmmune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis. Journal of Medical Microbiology, 2013, 62, 1272-1280.	0.7	6
29	Developing a Live Probiotic Vaccine Based on the Enterococcus faecium L3 Strain Expressing Influenza Neuraminidase. Microorganisms, 2021, 9, 2446.	1.6	5
30	Determination of group B streptococcal genes encoding putative adherence factors in GBS clinical strains. International Congress Series, 2006, 1289, 227-230.	0.2	4
31	Bacteriophage content of M49 strains of <i>Streptococcus pyogenes</i> . FEMS Microbiology Letters, 2009, 294, 9-15.	0.7	4
32	Mucosal vaccine based on attenuated influenza virus and the group B Streptococcus recombinant peptides protected mice from influenza and S. pneumoniae infections. PLoS ONE, 2019, 14, e0218544.	1.1	4
33	Analysis of Pathogenic Group B Streptococci by Pulsed Field Gel Electrophoresis. Advances in Experimental Medicine and Biology, 1997, 418, 351-353.	0.8	3
34	Effect of VEGF on Mouse Thymocyte Proliferation and Apoptosis In Vitro. Bulletin of Experimental Biology and Medicine, 2005, 139, 576-579.	0.3	3
35	Antagonistic activity of Enterococcus faecium L3 against different groups of pathogenic streptococci. International Congress Series, 2006, 1289, 363-366.	0.2	3
36	Influence of synthetic peptide inducers on antibacterial activity of enterococci. Beneficial Microbes, 2011, 2, 9-13.	1.0	3

Alexander N Suvorov

#	Article	IF	CITATIONS
37	Comparative Genomics: Islands of genetic novelty. Heredity, 2002, 89, 407-408.	1.2	2
38	Construction of a GBS-GAS DNA subtraction library allows discovery of previously unidentified GBS genes and rapid location of unique regions on the GBS chromosome. Journal of Basic Microbiology, 2004, 44, 66-74.	1.8	2
39	Distribution and genetic organization of pathogenicity island XII among the clinical strains of GBS. Molecular Genetics, Microbiology and Virology, 2013, 28, 15-19.	0.0	2
40	Clinical strains of Streptococcus agalactiae carry two different variants of pathogenicity island XII. Folia Microbiologica, 2017, 62, 393-399.	1.1	2
41	Irritable bowel syndrome therapy in Vietnam with probiotic enterococci. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 35-43.	0.1	2
42	Epithelial protective therapy in comorbid diseases. Practical Guidelines for Physicians. Terapevticheskii Arkhiv, 2022, 94, 940-956.	0.2	2
43	Incidence of virulence determinants in enterococcal strains of probiotic and clinical origin. International Congress Series, 2006, 1289, 367-369.	0.2	1
44	Complete Genome Sequences of <i>emm111</i> Type Streptococcus pyogenes Strain GUR, with Antitumor Activity, and Its Derivative Strain GURSA1 with an Inactivated <i>emm</i> Gene. Genome Announcements, 2017, 5, .	0.8	1
45	Inactivation of M111 Protein Gene Modifies Streptococcus Pyogenes Interactions with Mouse Macrophages In Vitro. Bulletin of Experimental Biology and Medicine, 2018, 164, 347-350.	0.3	1
46	Application of Nucleic Acid Reference Material for Rapid Detection of Cronobacter sakazakii (Cronobacter spp.) in Flammulina velutipes. Journal of Food Quality, 2020, 2020, 1-8.	1.4	1
47	Russian strains of group B streptococci are different in the content and organization of the PAI-A and PAI-A1 pathogenicity islands. Journal of Obstetrics and Women's Diseases, 2021, 70, 65-72.	0.0	1
48	Gallbladder microbiota in patients with gallstone disease. HERALD of North-Western State Medical University Named After I I Mechnikov, 2020, 12, 37-44.	0.1	1
49	Associated virus-bacterial vaccine based on seasonal LAIV and <i>S. pneumoniae</i> chimeric peptide provide protection against post-influenza pneumococcal infection in mouse model. Virulence, 2022, 13, 558-568.	1.8	1
50	Chromosomal Analysis of Group A Streptococci by Pulsed Field Gel Electrophoresis. Advances in Experimental Medicine and Biology, 1997, 418, 979-981.	0.8	0
51	Immunogenicity and protective activity of recombinant influenza viruses expressing fragments of ScaAB lipoprotein of group B streptococci in a mouse model. Meditsinskii Akademicheskii Zhurnal, 2020, 20, 33-42.	0.2	Ο
52	Construction of the Enterococcal Strain Expressing Immunogenic Fragment of SARS-Cov-2 Virus. Frontiers in Pharmacology, 2022, 12, .	1.6	0
53	Experience of using a probiotic strain of Enterococcus in long-term nutritional support for premature children. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2022, 66, 115-120.	0.1	0
54	Personalized symbiontic therapy for children with functional digestive disorders. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 44-52.	0.1	0