Leonid Kustov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8288063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Applied Catalysis A: General, 1999, 188, 3-35.	2.2	378
2	Adsorption of carbon monoxide on ZSM-5 zeolites: infrared spectroscopic study and quantum-chemical calculations. The Journal of Physical Chemistry, 1987, 91, 5247-5251.	2.9	249
3	Nanoshaped CuO/CeO ₂ Materials: Effect of the Exposed Ceria Surfaces on Catalytic Activity in N ₂ 0 Decomposition Reaction. ACS Catalysis, 2015, 5, 5357-5365.	5.5	181
4	Organic and hybrid molecular systems. Mendeleev Communications, 2015, 25, 75-82.	0.6	170
5	Measuring and predicting ΔvapH298 values of ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 8544.	1.3	155
6	Comparative IR-spectroscopic study of low-temperature H2and CO adsorption on Na zeolites. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3367-3372.	1.7	127
7	Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chemistry, 2007, 9, 1229.	4.6	126
8	The application of metal-organic frameworks in catalysis (Review). Petroleum Chemistry, 2010, 50, 167-180.	0.4	108
9	Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. Journal of Hazardous Materials, 2018, 347, 89-94.	6.5	98
10	Reaction Products and Transformations of Intermediates in the Aqueousâ€Phase Reforming of Sorbitol. ChemSusChem, 2010, 3, 708-718.	3.6	94
11	lonic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages. Russian Chemical Reviews, 2015, 84, 875-890.	2.5	90
12	Challenges in the development of organic and hybrid molecular systems. Mendeleev Communications, 2016, 26, 365-374.	0.6	89
13	Aqueous phase reforming of xylitol and sorbitol: Comparison and influence of substrate structure. Applied Catalysis A: General, 2012, 435-436, 172-180.	2.2	86
14	Organic and hybrid systems: from science to practice. Mendeleev Communications, 2017, 27, 425-438.	0.6	86
15	Infrared spectroscopic study of the interaction of cations in zeolites with simple molecular probes. Part 1.—Adsorption of molecular hydrogen on alkaline forms of zeolites as a test for localization sites. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2675-2678.	1.7	81
16	Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. Journal of Molecular Catalysis A, 2004, 209, 97-106.	4.8	80
17	Selective oxidation of ethanol to acetaldehyde over Au–Cu catalysts prepared by a redox method. Catalysis Today, 2015, 241, 246-254.	2.2	79
18	A Brief Review of Carbon Dioxide Hydrogenation to Methanol Over Copper and Iron Based Catalysts. Oil and Gas Science and Technology, 2017, 72, 30.	1.4	76

#	Article	IF	CITATIONS
19	Catalysis as an important tool of green chemistry. Russian Chemical Reviews, 2010, 79, 441-461.	2.5	72
20	Selective oxidation of aromatic compounds on zeolites using N2O as a mild oxidant. Catalysis Today, 2000, 61, 123-128.	2.2	66
21	The enthalpies of vaporisation of ionic liquids: new measurements and predictions. Physical Chemistry Chemical Physics, 2012, 14, 3181.	1.3	66
22	Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environment International, 2011, 37, 1044-1052.	4.8	65
23	Methanol synthesis from the catalytic hydrogenation of CO2 over CuO–ZnO supported on aluminum and silicon oxides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 416-422.	2.7	61
24	A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. Journal of Hazardous Materials, 2020, 384, 121429.	6.5	61
25	IR spectroscopic study of Pt/Kl zeolites using adsorption of CO as a molecular probe. Catalysis Letters, 1991, 9, 121-126.	1.4	60
26	Spectroscopic and ab initio study of the interaction of molecular hydrogen with the isolated silica hydroxyls and related systems. The Journal of Physical Chemistry, 1992, 96, 1040-1045.	2.9	60
27	Investigation of hydroxyl groups in crystalline silicoaluminophosphate SAPO-34 by diffuse reflectance infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 897.	1.7	59
28	Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers. Fuel Processing Technology, 2018, 169, 94-100.	3.7	56
29	Aqueous-phase reforming of xylitol over Pt/C and Pt/TiC-CDC catalysts: catalyst characterization and catalytic performance. Catalysis Science and Technology, 2014, 4, 387-401.	2.1	54
30	In situ synthesis of novel ZIF-8 membranes on polymeric and inorganic supports. Journal of Materials Chemistry A, 2015, 3, 7469-7476.	5.2	53
31	An easy way to Pd–Zn nanoalloy with defined composition from a heterobimetallic Pd(μ–OOCMe)4Zn(OH2) complex as evidenced by XAFS and XRD. Catalysis Letters, 2006, 112, 155-161.	1.4	51
32	Catalytic properties of Ru nanoparticles introduced in a matrix of hypercrosslinked polystyrene toward the low-temperature oxidation of d-glucose. Journal of Molecular Catalysis A, 2007, 278, 112-119.	4.8	46
33	Infrared spectroscopic study of the interaction of cations in zeolites with simple molecular probes. Part 3.—Adsorption and polarization of methane and ethane on cationic forms of high-silica zeolites. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1393-1395.	1.7	44
34	A DRIFT spectroscopic study of acetylene adsorbed on metal oxides. Physical Chemistry Chemical Physics, 2003, 5, 4718.	1.3	42
35	Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food and Chemical Toxicology, 2018, 112, 507-517.	1.8	42
36	Influence of steric factors on reversible reactions of hydrogenation-dehydrogenation of polycyclic aromatic hydrocarbons on a Pt/C catalyst in hydrogen storage systems. Fuel, 2020, 280, 118625.	3.4	41

#	Article	IF	CITATIONS
37	Smart Metalâ€Organic Frameworks (MOFs): Switching Gas Permeation through MOF Membranes by External Stimuli. Chemical Engineering and Technology, 2018, 41, 224-234.	0.9	40
38	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
39	Synthesis of Pt modified ZSM-5 and beta zeolite catalysts: Influence of ultrasonic irradiation and preparation methods on physico-chemical and catalytic properties in pentane isomerization. Ultrasonics Sonochemistry, 2007, 14, 122-130.	3.8	39
40	Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids. Russian Journal of Physical Chemistry A, 2010, 84, 104-108.	0.1	39
41	Liquid-phase hydrogenation of phenylacetylene to styrene on silica-supported Pd–Fe nanoparticles. Mendeleev Communications, 2016, 26, 228-230.	0.6	39
42	FTIR study of the effects of water pretreatment on the acid sites and the dispersion of metal particles in Y zeolites and mordenites. Journal of Molecular Catalysis, 1992, 71, 233-244.	1.2	38
43	Fischer–Tropsch synthesis over MOF-supported cobalt catalysts (Co@MIL-53(Al)). Dalton Transactions, 2016, 45, 12006-12014.	1.6	37
44	Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules, 2021, 26, 6628.	1.7	37
45	Synthesis and Structural Characterization of a Series of Novel Zn(II)-based MOFs with Pyridine-2,5-dicarboxylate Linkers. Crystal Growth and Design, 2013, 13, 5305-5315.	1.4	35
46	Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective 1,2-propanediol oxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture. Applied Catalysis A: General, 2015, 491, 170-183.	2.2	35
47	Efficient polymer-based nanocatalysts with enhanced catalytic performance in wet air oxidation of phenol. Applied Catalysis B: Environmental, 2010, 94, 200-210.	10.8	34
48	The State and Reactivity of Pt6 Particles in ZSM-5 Zeolite. Catalysis Letters, 2008, 120, 8-13.	1.4	33
49	Metal-organic frameworks as materials for applications in sensors. Mendeleev Communications, 2019, 29, 361-368.	0.6	33
50	Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to aromatics. Journal of Petroleum Science and Engineering, 2019, 180, 773-778.	2.1	33
51	Metal/zeolite catalysts of methane dehydroaromatization. Russian Chemical Reviews, 2013, 82, 567-585.	2.5	32
52	Conversion of CO2 into liquid hydrocarbons in the presence of a Co-containing catalyst based on the microporous metal-organic framework MIL-53(Al). Fuel Processing Technology, 2018, 176, 101-106.	3.7	32
53	The effect of capping agents on the toxicity of silver nanoparticles to <i>Danio rerio</i> embryos. Nanotoxicology, 2019, 13, 1-13.	1.6	32
54	Microwave activation of catalysts and catalytic processes. Russian Journal of Physical Chemistry A, 2010, 84, 1676-1694.	0.1	31

#	Article	IF	CITATIONS
55	Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Transactions, 2019, 48, 15091-15104.	1.6	31
56	DRIFT, XPS and XAS Investigation of Au–Ni/Al2O3 Synergetic Catalyst for Allylbenzene Isomerization. Topics in Catalysis, 2009, 52, 344-350.	1.3	30
57	Microwave activation as an alternative production of metal-organic frameworks. Russian Chemical Bulletin, 2016, 65, 2103-2114.	0.4	30
58	Catalytic Hydroamination of Unsaturated Hydrocarbons. Topics in Catalysis, 2016, 59, 1196-1206.	1.3	30
59	Effect of surface hydrophilization on Pt/Sibunit catalytic activity in bicyclohexyl dehydrogenation in hydrogen storage application. International Journal of Hydrogen Energy, 2018, 43, 6191-6196.	3.8	30
60	Systems for accumulation, storage and release of hydrogen. Russian Chemical Reviews, 2020, 89, 897-916.	2.5	30
61	Lanthanum cobaltite perovskite supported onto mesoporous zirconium dioxide: Nature of active sites of VOC oxidation. Environment International, 2011, 37, 1053-1056.	4.8	29
62	Selective Roomâ€Temperature Hydrogenation of Carbonyl Compounds under Atmospheric Pressure over Platinum Nanoparticles Supported on Ceriaâ€Zirconia Mixed Oxide. European Journal of Organic Chemistry, 2019, 2019, 4159-4170.	1.2	29
63	Advanced Room-Temperature Synthesis of 2,5-Bis(hydroxymethyl)furan—A Monomer for Biopolymers—from 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9, 1161-1171.	3.2	29
64	Low-temperature transformations of sodium sulfate and sodium selenite in the presence of pre-reduced palladium modifier in graphite furnaces for electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1387-1396.	1.5	28
65	Metal-organic frameworks—New materials for hydrogen storage. Russian Journal of General Chemistry, 2007, 77, 721-739.	0.3	28
66	Study of selective adsorption of aromatic compounds from solutions by the flexible MIL-53(Al) metal-organic framework. Russian Chemical Bulletin, 2015, 64, 1039-1048.	0.4	28
67	Infrared spectroscopic study of the interactions of cations in zeolites with simple molecular probes. Part 2.—Adsorption and polarization of molecular hydrogen on zeolites containing polyvalent cations. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3251-3253.	1.7	26
68	A new hydrogen storage system based on efficient reversible catalytic hydrogenation/dehydrogenation of terphenyl. International Journal of Hydrogen Energy, 2008, 33, 2721-2728.	3.8	26
69	Peculiarities of oxidative coupling of methane in redox cyclic mode over Ag–La2O3/SiO2 catalysts. Applied Catalysis A: General, 2010, 380, 28-32.	2.2	26
70	Hydrogen storage materials. Mendeleev Communications, 2014, 24, 1-8.	0.6	26
71	Control of morphology and size of microporous framework MIL-53(Al) crystals by synthesis procedure. Mendeleev Communications, 2015, 25, 466-467.	0.6	26
72	Alkaline-modified ZSM-5 zeolite to control hydrocarbon cold-start emission. Microporous and Mesoporous Materials, 2018, 260, 54-58.	2.2	26

#	Article	IF	CITATIONS
73	One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles. Ceramics International, 2019, 45, 14384-14388.	2.3	26
74	Peculiarities of Adsorption of Organic Compounds and Water on Silicas with Bonded Polyfluoroalkyl Groups. Journal of Colloid and Interface Science, 2002, 254, 39-48.	5.0	25
75	Evaluation of stability of silica-supported Fe–Pd and Fe–Pt nanoparticles in aerobic conditions using thermal analysis. Journal of Thermal Analysis and Calorimetry, 2014, 118, 749-758.	2.0	25
76	New organic–inorganic hybrid molecular systems and highly organized materials in catalysis. Russian Journal of Physical Chemistry A, 2015, 89, 2006-2021.	0.1	25
77	Ionic liquids based on the imidazolium cation in platinum and titanium electropolishing. Green Chemistry, 2011, 13, 1004.	4.6	23
78	Microwave-assisted synthesis of magnetite nanoparticles possessing superior magnetic properties. Mendeleev Communications, 2018, 28, 559-561.	0.6	23
79	Design of novel catalysts for synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones: NH2-MIL-101(Al) as integrated structural scaffold for catalytic materials based on calix[4]arenes. Journal of Catalysis, 2019, 369, 60-71.	3.1	23
80	Heterogeneous iron-containing nanocatalysts – promising systems for selective hydrogenation and hydrogenolysis. Catalysis Science and Technology, 2020, 10, 3160-3174.	2.1	23
81	Activity of Au, Ni, and Au-Ni catalysts in the water-gas shift reaction and carbon monoxide oxidation. Kinetics and Catalysis, 2014, 55, 311-318.	0.3	22
82	Study of the Nature of Acid Sites of Montmorillonites Pillared with Aluminium and Oligosilsesquioxane Complex Cations. 1. Brönsted Acidity. Clays and Clay Minerals, 1994, 42, 421-427.	0.6	21
83	Oxidative coupling of methane in the redox cyclic mode over the catalysts on the basis of CeO2 and La2O3. Mendeleev Communications, 2010, 20, 28-30.	0.6	21
84	Water as an Inhibitor of Metal Corrosion in Hydrophobic Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 22526-22531.	1.5	21
85	Hydrogenation of carbon dioxide: a comparison of different types of active catalysts. Mendeleev Communications, 2014, 24, 349-350.	0.6	21
86	Interaction of vanadium containing catalysts with microwaves and their activation in oxidative dehydrogenation of ethane. Catalysis Today, 2009, 141, 300-305.	2.2	20
87	Toxicity of metal nanoparticles with a focus on silver. Mendeleev Communications, 2013, 23, 59-65.	0.6	20
88	Microwave-assisted synthesis of mesoporous metal-organic framework NH2—MIL-101(Al). Russian Chemical Bulletin, 2015, 64, 2791-2795.	0.4	20
89	Template-free one-step synthesis of micro-mesoporous CeO2–ZrO2 mixed oxides with a high surface area for selective hydrogenation. Ceramics International, 2020, 46, 13980-13988.	2.3	20
90	Influence of support acidity on electronic state of platinum in oxide systems promoted by SO4 2â'' anions. Russian Chemical Bulletin, 1998, 47, 1061-1066.	0.4	19

#	Article	IF	CITATIONS
91	Nanogold-Containing Catalysts for Low-Temperature Removal of S-VOC from Air. Topics in Catalysis, 2009, 52, 351-358.	1.3	19
92	Surface State of Sacrificial Copper Electrode by Electropolishing in Hydrophobic Ionic Liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. ACS Applied Materials & Interfaces, 2013, 5, 10551-10558.	4.0	19
93	Ultra-Small Pd Nanoparticles on Ceria as an Advanced Catalyst for CO Oxidation. Catalysts, 2019, 9, 385.	1.6	19
94	Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water. Pure and Applied Chemistry, 2014, 86, 1141-1158.	0.9	18
95	The role of initial hexagonal self-ordering in anodic nanotube growth in ionic liquid. Electrochemistry Communications, 2017, 75, 78-81.	2.3	18
96	Hydrogen storage in organosilicon ionic liquids. International Journal of Hydrogen Energy, 2020, 45, 33807-33817.	3.8	18
97	Platinum-containing catalyst supported on a metal-organic framework structure in the selective oxidation of benzyl alcohol derivatives into aldehydes. Kinetics and Catalysis, 2011, 52, 273-276.	0.3	17
98	Effect of the support morphology on the performance of Co nanoparticles deposited on metal–organic framework MIL-53(Al) in Fischer–Tropsch synthesis. Polyhedron, 2019, 157, 389-395.	1.0	17
99	Palladium nanoparticles embedded in MOF matrices: Catalytic activity and structural stability in iodobenzene methoxycarbonylation. Polyhedron, 2019, 158, 55-64.	1.0	17
100	Alkane activation by silica supported Group VB metal hydrides. A quantum-chemical study. Russian Chemical Bulletin, 2005, 54, 300-311.	0.4	16
101	Kinetics of decalin dehydrogenation on Pt/C catalyst. Russian Chemical Bulletin, 2015, 64, 2642-2645.	0.4	16
102	Mass spectrometric studies of 1â€ethylâ€3â€methylimidazolium and 1â€propylâ€2,3â€dimethylimidazolium bis(trifluoromethyl)â€sulfonylimides. Rapid Communications in Mass Spectrometry, 2015, 29, 1227-1232.	0.7	16
103	Reduction of carbon dioxide with hydrogen on a CuO–ZnO mixed catalyst under supercritical conditions. Mendeleev Communications, 2015, 25, 446-448.	0.6	16
104	Carbon Dioxide Hydrogenation on Au Nanoparticles Supported on TiO2, ZrO2 and Sulfated ZrO2 Under Supercritical Conditions. Topics in Catalysis, 2016, 59, 1104-1109.	1.3	16
105	Thermal decomposition and reducibility of silica-supported precursors of Cu, Fe and Cu–Fe nanoparticles. Journal of Thermal Analysis and Calorimetry, 2018, 134, 233-251.	2.0	16
106	Ce–Zr materials with a high surface area as catalyst supports for hydrogenation of CO ₂ . Functional Materials Letters, 2020, 13, 2040004.	0.7	16
107	Processing of lignocellulosic polymer wastes using microwave irradiation. Mendeleev Communications, 2022, 32, 1-8.	0.6	16
108	The state of metals in the supported bimetallic Ptâ^'Pd/SO4/ZrO2 system. Russian Chemical Bulletin, 1999, 48, 1255-1260.	0.4	15

#	Article	IF	CITATIONS
109	Comparative study on dehydrogenation of bulky, branched and polycondensed naphthenes for hydrogen storage in microwave and thermal modes. International Journal of Hydrogen Energy, 2008, 33, 4116-4121.	3.8	15
110	Ionic liquids based on imidazolium tetrafluoroborate for the removal of aromatic sulfur-containing compounds from hydrocarbon mixtures. Green Chemistry, 2010, 12, 346.	4.6	15
111	Novel metal-organic 1-D Ñoordination polymer based on pyrazine-2,5-dicarboxylate ligands: synthesis and structure investigation. Inorganica Chimica Acta, 2011, 376, 367-372.	1.2	15
112	Intermetallide catalysts for hydrogen storage on the basis ofÂreversible aromatics hydrogenation/dehydrogenation reactions. International Journal of Hydrogen Energy, 2013, 38, 5713-5716.	3.8	15
113	Effect of the conditions of preparing mixed oxide catalyst of Mo-V-Te-Nb-O composition on its activity in the oxidative dehydrogenation of ethane. Russian Journal of Physical Chemistry A, 2013, 87, 1983-1988.	0.1	15
114	Self-Organized Hexagonal Nanostructures on Nickel and Steel Formed by Anodization in 1-Butyl-3-methylimidazolium bis(triflate)imide Ionic Liquid. Journal of Physical Chemistry C, 2014, 118, 21293-21298.	1.5	15
115	Application of silica-supported Fe–Cu nanoparticles in the selective hydrogenation of p-dinitrobenzene to p-phenylenediamine. Russian Journal of Physical Chemistry A, 2017, 91, 201-204.	0.1	15
116	Selective Hydrogenation of Acetylene and Physicochemical Properties of Pd–Fe/Al2O3 Bimetallic Catalysts. Russian Journal of Physical Chemistry A, 2018, 92, 862-869.	0.1	15
117	Carbon Dioxide Reduction with Hydrogen on Carbonâ€Nanotubeâ€Supported Catalysts under Supercritical Conditions. Energy Technology, 2019, 7, 1900174.	1.8	15
118	Hydrothermal microwaveâ€assisted synthesis of LaFeO ₃ catalyst for N ₂ O decomposition. Journal of the American Ceramic Society, 2021, 104, 492-503.	1.9	15
119	New evidence for the electronic nature of the strong metal-support interaction effect over a Pt/TiO2 hydrogenation catalyst. Mendeleev Communications, 2001, 11, 186-188.	0.6	14
120	Oxo/imido heterometathesis of N-sulfinylamines and carbonyl compounds catalyzed by silica-supported vanadium oxochloride. Journal of Catalysis, 2011, 283, 108-118.	3.1	14
121	1,3-Butadiene Adsorption over Transition Metal Polycation Exchanged Faujasites. Industrial & Engineering Chemistry Research, 2012, 51, 7073-7080.	1.8	14
122	Carboxylation of phenylacetylene by carbon dioxide on heterogeneous Ag-containing catalysts. Russian Chemical Bulletin, 2014, 63, 2652-2656.	0.4	14
123	Gold nanoparticles in environmental catalysis: Influence of the Fe-modified alumina supports on the catalytic behavior of supported gold nanoparticles in CO oxidation in the presence of ammonia. Chemical Engineering Journal, 2016, 292, 62-71.	6.6	14
124	Adsorption of methane on an MOF-199 organometallic framework structure at high pressures in the range of supercritical temperatures. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 24-29.	0.3	14
125	Nickel–Alumina Catalysts in the Reaction of Carbon Dioxide Re-Forming of Methane under Thermal and Microwave Heating. Industrial & Engineering Chemistry Research, 2017, 56, 13034-13039.	1.8	14
126	Hydrogenation of naphthalene and anthracene on Pt/C catalysts. Russian Chemical Bulletin, 2018, 67, 1406-1411.	0.4	14

#	Article	IF	CITATIONS
127	Dehydrogenation of propane in the presence of CO2 on Cr(3%)/SiO2 catalyst under supercritical conditions. Mendeleev Communications, 2020, 30, 195-197.	0.6	14
128	Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. Nanomaterials, 2021, 11, 3270.	1.9	14
129	Formation of palladium hydride nanoparticles in Pd/C catalyst as evidenced by in situ XAS data. Russian Chemical Bulletin, 2009, 58, 280-283.	0.4	13
130	Comparing the activities of catalysts in perhydro-m-terphenyl dehydrogenation. Catalysis in Industry, 2015, 7, 60-63.	0.3	13
131	Ethane oxidative dehydrogenation to ethylene in a membrane reactor with asymmetric ceramic membranes. Chemical Engineering and Processing: Process Intensification, 2018, 126, 150-155.	1.8	13
132	Direct hydrogenation of CO2 on deposited iron-containing catalysts under supercritical conditions. Mendeleev Communications, 2018, 28, 147-149.	0.6	13
133	Synergistic effect of metal components of the low-loaded Pt-Ni-Cr/C catalyst in the bicyclohexyl dehydrogenation reaction. International Journal of Hydrogen Energy, 2021, 46, 14532-14539.	3.8	13
134	A new method for the synthesis of nitriles enriched with the15N isotope. Russian Chemical Bulletin, 1994, 43, 402-404.	0.4	12
135	Copper Complexes Stabilized by Chitosans: Peculiarities of the Structure, Redox, and Catalytic Properties. Kinetics and Catalysis, 2003, 44, 793-800.	0.3	12
136	Study of Palladium Complexes with Chitosan and Its Derivatives as Potential Catalysts for Terminal Olefin Oxidation. Kinetics and Catalysis, 2004, 45, 743-751.	0.3	12
137	Direct d-Glucose Oxidation over Noble Metal Nanoparticles Introduced on Polymer and Inorganic Supports. Topics in Catalysis, 2009, 52, 387-393.	1.3	12
138	Acidic and catalytic properties of silica modified by iron oxide nanoparticles. Catalysis Today, 2010, 152, 48-53.	2.2	12
139	One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation. Catalysis in Industry, 2013, 5, 223-231.	0.3	12
140	Oxidation of Carbon Monoxide over MLaO _{<i>x</i>} Perovskites Supported on Mesoporous Zirconia. ChemCatChem, 2014, 6, 1990-1997.	1.8	12
141	Hydrogenation of biphenyl and isomeric terphenyls over a Pt-containing catalyst. Russian Chemical Bulletin, 2017, 66, 1208-1212.	0.4	12
142	Silica-supported iron oxide nanoparticles: unexpected catalytic activity in hydrogenation of phenylacetylene. Mendeleev Communications, 2017, 27, 512-514.	0.6	12
143	Microwave-Assisted Synthesis of Water-Dispersible Humate-Coated Magnetite Nanoparticles: Relation of Coating Process Parameters to the Properties of Nanoparticles. Nanomaterials, 2020, 10, 1558.	1.9	12
144	Impact of the Preparation Procedure on the Performance of the Microporous HKUST-1 Metal-Organic Framework in the Liquid-Phase Separation of Aromatic Compounds. Molecules, 2020, 25, 2648.	1.7	12

#	Article	IF	CITATIONS
145	Recent progress in hydrogenation of esters on heterogeneous bimetallic catalysts. Catalysis Science and Technology, 2021, 11, 7229-7238.	2.1	12
146	Isomerization of cyclic hydrocarbons mediated by an AlCl3-based ionic liquid as catalyst. Reaction Kinetics and Catalysis Letters, 2003, 80, 329-335.	0.6	11
147	Title is missing!. Russian Chemical Bulletin, 2003, 52, 30-35.	0.4	11
148	Interaction of Cinchonidine and 1-Phenyl-1,2-Propanedione on the Surface of a Chirally Modified Pt/Al2O3Hydrogenation Catalyst. Journal of Physical Chemistry C, 2007, 111, 9374-9383.	1.5	11
149	The structure of active sites in a molybdenum/zeolite catalyst for methane dehydroaromatization: a DFT study. Russian Chemical Bulletin, 2013, 62, 1967-1973.	0.4	11
150	Oxidative dehydrogenation of C2–C4 alkanes into alkenes: Conventional catalytic systems and microwave catalysis. Russian Journal of Physical Chemistry A, 2013, 87, 345-351.	0.1	11
151	Microwave-assisted conversion of lignin into aromatic compounds. Russian Journal of Organic Chemistry, 2015, 51, 1677-1680.	0.3	11
152	Effect of the structure of the ortho, meta, and para isomers of perhydroterphenyl on their reactivity in heterogeneous catalytic dehydrogenation. Kinetics and Catalysis, 2016, 57, 219-223.	0.3	11
153	Influence of the thermal treatment conditions and composition of bimetallic catalysts Fe—Pd/SiO2 on the catalytic properties in phenylacetylene hydrogenation. Russian Chemical Bulletin, 2016, 65, 432-439.	0.4	11
154	Silica-supported copper nanoparticles as efficient catalysts for the liquid-phase selective hydrogenation of p-dinitrobenzene by molecular hydrogen. Russian Chemical Bulletin, 2016, 65, 2850-2854.	0.4	11
155	Novel Fe–Pd/γ-Al2O3 catalysts for the selective hydrogenation of C≡C bonds under mild conditions. Mendeleev Communications, 2019, 29, 339-342.	0.6	11
156	Thermal analysis of intermediates formed during preparation of a Pt/WOx/Al2O3 catalyst for 1,3-propanediol synthesis from glycerol. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2205-2218.	2.0	11
157	Influence of the porous structure and functionality of the MIL type metal-organic frameworks and carbon matrices on the adsorption of 2,4-dichlorophenoxyacetic acid. Russian Chemical Bulletin, 2021, 70, 67-74.	0.4	11
158	Heterogeneous additiveâ€free highly selective synthesis of 2,5â€bis(hydroxymethyl)furan over catalysts with ultraâ€low <scp>Pt</scp> content. Journal of Chemical Technology and Biotechnology, 2021, 96, 2421-2425.	1.6	11
159	Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions. Molecules, 2021, 26, 2883.	1.7	11
160	Effect of electron beam-irradiation on the structure and catalytic performance of Pd nanoparticles supported on Al2O3 and carbon. Mendeleev Communications, 2006, 16, 254-256.	0.6	10
161	Comparison of activities of bulk and monolith Mn–Na2WO4/SiO2 catalysts in oxidative coupling of methane. Mendeleev Communications, 2009, 19, 337-339.	0.6	10
162	Pd/H-Beta catalysts: Characterization and reactivity in piperonyl alcohol selective oxidation. Applied Catalysis A: General, 2009, 359, 144-150.	2.2	10

#	Article	IF	CITATIONS
163	The influence of the dispersion of metals on the activity of Pt/C and Pd/C catalysts in the dehydrogenation of perhydroterphenyl. Russian Journal of Physical Chemistry A, 2010, 84, 1122-1126.	0.1	10
164	State of active components on the surface of the PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of carbon monoxide. Kinetics and Catalysis, 2012, 53, 262-273.	0.3	10
165	Catalytic properties of supported gold nanoparticles in organic syntheses. Russian Chemical Bulletin, 2013, 62, 869-877.	0.4	10
166	Synthesis and properties of ionic liquids with siloxane-functionalized cations. Russian Chemical Bulletin, 2014, 63, 2702-2706.	0.4	10
167	Hydroamination of phenylacetylene in the presence of gold-containing catalytic systems supported on carriers modified by ionic liquids. Russian Chemical Bulletin, 2015, 64, 2811-2815.	0.4	10
168	Novel catalysts for selective hydrogenation of C≡C bond based on Pd nanoparticles immobilized in phenylenecarboxylate frameworks (NH2)-MIL-53(Al). Russian Chemical Bulletin, 2015, 64, 284-290.	0.4	10
169	Synthesis and properties of dicationic ionic liquids containing a siloxane structural moiety. Russian Journal of Physical Chemistry A, 2015, 89, 2204-2209.	0.1	10
170	Synthesis of dimethyl carbonate from methanol and CO2 on the SnO2/Al2O3-based catalyst. Mendeleev Communications, 2016, 26, 497-499.	0.6	10
171	Dicationic polysiloxane ionic liquids. Russian Chemical Bulletin, 2017, 66, 1269-1277.	0.4	10
172	Hydroxyl-containing ionic liquids as heat-transfer agents. Mendeleev Communications, 2017, 27, 605-607.	0.6	10
173	Decalin ring opening on Pt-Ru/SiO2 catalysts. Fuel Processing Technology, 2018, 173, 270-275.	3.7	10
174	Gasification of metal-containing coals and carbons via their reaction with carbon dioxide. Mendeleev Communications, 2018, 28, 530-532.	0.6	10
175	The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst. Nanomaterials, 2018, 8, 217.	1.9	10
176	Effect of Isomerization on the Reversible Reaction of Hydrogenationâ€Dehydrogenation of <i>ortho</i> â€Terphenyl onÂaÂPt/C Catalyst. Chemical Engineering and Technology, 2018, 41, 1842-1846.	0.9	10
177	Tuning the Catalytic Performance of Novel Composites Based on ZIFâ€8 and Nafen through Dimensional and Concentration Effects in the Synthesis of Propylene Glycol Methyl Ether. European Journal of Organic Chemistry, 2019, 2019, 4215-4225.	1.2	10
178	Hydrogen generation by gasification of phenol and alcohols in supercritical water. International Journal of Hydrogen Energy, 2020, 45, 30178-30187.	3.8	10
179	Advantages of Electrochemical Polishing of Metals and Alloys in Ionic Liquids. Metals, 2021, 11, 959.	1.0	10
180	Title is missing!. Russian Chemical Bulletin, 2002, 51, 249-254.	0.4	9

#	Article	IF	CITATIONS
181	Study of the formation and stability of the Pd and Pt metallic nanoparticles on carbon support. Russian Chemical Bulletin, 2004, 53, 528-537.	0.4	9
182	Supercritical n-butane isomerization. Kinetics and Catalysis, 2004, 45, 890-893.	0.3	9
183	Quantum chemical investigation of the interaction of the Pt6 cluster with oxides of different nature. Russian Chemical Bulletin, 2007, 56, 397-406.	0.4	9
184	Estimation of the Toxicity of Silver Nanoparticles by Using Planarian Flatworms. ATLA Alternatives To Laboratory Animals, 2014, 42, 51-58.	0.7	9
185	Mono and Bimetallic Pt–(M)/Al2O3 Catalysts for Dehydrogenation of Perhydro-N-ethylcarbazole as the Second Stage of Hydrogen Storage. Catalysis Letters, 2018, 148, 1472-1477.	1.4	9
186	Silicon nanoparticles: characterization and toxicity studies. Environmental Science: Nano, 2018, 5, 2945-2951.	2.2	9
187	Hydrogenation of Acetophenone at Room Temperature and Atmospheric Pressure over Pt-Containing Catalysts Supported on Reducible Oxides. Russian Journal of Physical Chemistry A, 2019, 93, 231-235.	0.1	9
188	Metathesis of hex-1-ene in ionic liquids. Mendeleev Communications, 2004, 14, 59-60.	0.6	8
189	A Possible Mechanism of Hydrogen Reverse Spillover in Platinum-Zeolite Catalysts. Catalysis Letters, 2009, 128, 313-317.	1.4	8
190	Glycerol dehydroxylation in hydrogen on a Raney cobalt catalyst. Catalysis in Industry, 2010, 2, 287-289.	0.3	8
191	Membrane catalytic systems for C2-C4 alkane conversion. Nanotechnologies in Russia, 2012, 7, 560-574.	0.7	8
192	Metal organic frameworks (MOF) as CO2 adsorbents. Russian Journal of Organic Chemistry, 2014, 50, 1551-1555.	0.3	8
193	Focus on Fuel Quality: Removal of Sulfur-, Nitrogen-, and Oxygen-Containing Aromatic Compounds by Extraction from Hydrocarbons into the Regenerable Ionic Liquid. Energy & Fuels, 2015, 29, 5253-5258.	2.5	8
194	Using ceramic membranes for the separation of hydrogen produced by dehydrogenation of perhydro-m-terphenyl. Russian Journal of Physical Chemistry A, 2015, 89, 16-18.	0.1	8
195	The evaporation study of silicon-containing ionic liquid. Chemical Physics Letters, 2016, 657, 8-10.	1.2	8
196	Formation of a regular cellular structure on the surface of Zr67Ni30Si3 alloy at electrochemical polishing in ionic liquids. Russian Chemical Bulletin, 2016, 65, 2801-2804.	0.4	8
197	Thermodynamics of adsorption of aromatic compounds from non-aqueous solutions by MIL-53(Al) metal-organic framework. Russian Chemical Bulletin, 2017, 66, 16-22.	0.4	8
198	Reversible hydrogenation—dehydrogenation reactions of meta-terphenyl on catalysts with various supports. Russian Chemical Bulletin, 2018, 67, 28-32.	0.4	8

#	Article	IF	CITATIONS
199	Hydrogenation of acetylene into ethane–ethene mixtures over modified Pd–alumina catalysts. Mendeleev Communications, 2020, 30, 462-464.	0.6	8
200	Steam reforming of lignin modified with iron. Mendeleev Communications, 2020, 30, 76-77.	0.6	8
201	Dehydrogenation of Propane in the Presence of CO2 on Supported Monometallic MOy/SiO2 and CrOxMOy/SiO2 (M = Fe, Co, and Ni) Bimetallic Catalysts. Russian Journal of Physical Chemistry A, 2021, 95, 55-62.	0.1	8
202	Investigation of the state of palladium in the Pd/SO4/ZrO2 system by diffuse-reflectance IR spectroscopy. Russian Chemical Bulletin, 1998, 47, 55-59.	0.4	7
203	Title is missing!. Kinetics and Catalysis, 2002, 43, 711-723.	0.3	7
204	High-temperature methane oxidation over metallic monolith-supported zeolite catalysts containing Mn, Co, and Pd ions. Russian Chemical Bulletin, 2003, 52, 1933-1939.	0.4	7
205	The state of platinum in the potassium platinum-11-tungstosilicate system on alumina studied by diffuse-reflectance IR spectroscopy. Russian Chemical Bulletin, 2003, 52, 2376-2381.	0.4	7
206	Composite materials on the basis of phenylenecarboxylate framework MOF-5 and calix[4]arenes with various structures. Russian Journal of Physical Chemistry A, 2011, 85, 293-297.	0.1	7
207	Comparative Study of Au Modified Beta, MCM-22, Mordenite, ZSM-5, MCM-41, Ce-MCM-41 Catalysts in Piperonyl Alcohol Oxidation. Current Catalysis, 2012, 1, 58-66.	0.5	7
208	Alkylation of phenol with camphene in the presence of heteropolyacids supported on metal oxides. Russian Journal of Physical Chemistry A, 2013, 87, 342-344.	0.1	7
209	Kinetics and mechanism of the low-temperature oxidation of carbon monoxide with oxygen on a PdCl2–CuCl2/γ-Al2O3 catalyst. Kinetics and Catalysis, 2017, 58, 179-190.	0.3	7
210	A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods. Materials, 2017, 10, 496.	1.3	7
211	Evaporation Study of an Ionic Liquid with a Double-Charged Cation. Journal of Physical Chemistry A, 2018, 122, 4622-4627.	1.1	7
212	Effect of isomerization on the performance of aromatic hydrogen storage systems possessing different condensation extents. Mendeleev Communications, 2019, 29, 25-28.	0.6	7
213	Zeolite-Like Boron Imidazolate Frameworks (BIFs): Synthesis and Application. Crystals, 2020, 10, 617.	1.0	7
214	Properties of Dicationic Disiloxane Ionic Liquids. Molecules, 2020, 25, 2949.	1.7	7
215	Catalysis by Hybrid Nanomaterials. Molecules, 2021, 26, 352.	1.7	7
216	CuO-Fe2O3 Nanoparticles Supported on SiO2 and Al2O3 for Selective Hydrogenation of 2-Methyl-3-Butyn-2-ol. Catalysts, 2021, 11, 625.	1.6	7

#	Article	IF	CITATIONS
217	Dry reforming of lignin: the effect of impregnation with iron. Mendeleev Communications, 2021, 31, 376-378.	0.6	7
218	Kinetic Modeling of Hydrogen Production by Dehydrogenation of Polycyclic Naphthenes with Varying Degrees of Condensation. Molecules, 2022, 27, 2236.	1.7	7
219	Surface chemistry of noble metal complexes anchored from cationic complexes on a graphitised carbon support. Mendeleev Communications, 2000, 10, 99-100.	0.6	6
220	Temperature Hysteresis in CO Oxidation on Copper Oxide Catalyst Applied to a Steel Gauze. Russian Journal of Applied Chemistry, 2002, 75, 582-584.	0.1	6
221	Formation of small rhodium metal particles on the surface of a carbon support. Kinetics and Catalysis, 2005, 46, 114-122.	0.3	6
222	Hydrogenation of α-oxophosphonates with molecular hydrogen catalyzed by palladium on carbon carrier as synthesis procedure for α-hydroxyphosphonates. Russian Journal of Organic Chemistry, 2007, 43, 1180-1185.	0.3	6
223	Intensities of IR stretching bands as a criterion of the strength of Lewis acid sites in ZSM-5 zeolites with bivalent cations. Catalysis Letters, 2007, 116, 81-86.	1.4	6
224	Application of MOF-5 as a component of heterogeneous catalytic systems for the liquid phase hydrogenation. Studies in Surface Science and Catalysis, 2008, 174, 463-466.	1.5	6
225	1,3-Cyclohexadiene hydrogenation in the presence of a palladium-containing catalytic system based on an MOF-5/calixarene composite. Kinetics and Catalysis, 2011, 52, 94-97.	0.3	6
226	Microwave-activated lignin conversion to synthesis gas. Russian Chemical Bulletin, 2015, 64, 2963-2965.	0.4	6
227	Effect of synthetic conditions on the adsorption properties of the resulting offretite-type zeolite. Russian Journal of Physical Chemistry A, 2015, 89, 846-851.	0.1	6
228	First successful synthesis of polypyridines in ionic liquid: Role of 1â€butyl-3-methylimidazolium tetrafluoroborate as electrolyte. Synthetic Metals, 2016, 221, 268-274.	2.1	6
229	Preparation, characterization, and catalytic testing of different Me–chitosan complexes for triglycerides transesterification. Research on Chemical Intermediates, 2016, 42, 4907-4920.	1.3	6
230	Tetrel, Chalcogen, and Charge-Assisted Hydrogen Bonds in 2-((2-Carboxy-1-(substituted)-2-hydroxyethyl)thio) Pyridin-1-ium Chlorides. Crystals, 2017, 7, 327.	1.0	6
231	New Molecular Sieve Materials: Composites Based on Metal–Organic Frameworks and Ionic Liquids. Petroleum Chemistry, 2019, 59, 770-787.	0.4	6
232	Dehydrogenataion of Bicyclohexyl over Ni/Oxidized Sibunit Catalyst. Russian Journal of Physical Chemistry A, 2019, 93, 652-657.	0.1	6
233	Cu-MOF-Catalyzed Carboxylation of Alkynes and Epoxides. Russian Journal of Organic Chemistry, 2019, 55, 1813-1820.	0.3	6
234	Recyclization of diethoxymethyl substituted benzimidazo-fused thiazolium salts. Mendeleev Communications, 2020, 30, 674-675.	0.6	6

#	Article	IF	CITATIONS
235	Hydrodeoxygenation of glycerol into propanols over a Ni/WO3–TiO2 catalyst. Mendeleev Communications, 2020, 30, 119-120.	0.6	6
236	IR spectroscopic study of acid sites in mordenites fluorinated under mild conditions. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 385.	1.7	5
237	Ethane hydrogenolysis on silica-supported tantalum hydride. Quantum-chemical study. Russian Chemical Bulletin, 2003, 52, 1928-1932.	0.4	5
238	Metathesis of hex-1-ene in ionic liquids catalyzed by WCl6. Russian Chemical Bulletin, 2004, 53, 2187-2191.	0.4	5
239	Catalytic synthesis of 1-arylethylphosphonates by the hydrogenation of unsaturated precursors in the presence of chitosan-based palladium catalysts. Russian Journal of Organic Chemistry, 2006, 42, 990-995.	0.3	5
240	Properties of the surface of silicas modified with bi-and trifunctional perfluorohexylsilanes: Adsorption of benzene. Russian Journal of Physical Chemistry A, 2007, 81, 1128-1135.	0.1	5
241	XPS study of the surface composition of modified nickel-cobalt powder catalysts for enantioselective ethyl acetoacetate hydrogenation. Russian Chemical Bulletin, 2007, 56, 2344-2347.	0.4	5
242	On the possibility of the detachment of hydrogen as a result of electron capture by a Broensted center on zeolites. Russian Journal of Physical Chemistry A, 2009, 83, 752-755.	0.1	5
243	The nature of lyophobic coating and the adsorption of organic molecules and water on modified silicas. Russian Journal of Physical Chemistry A, 2010, 84, 1945-1955.	0.1	5
244	Steam conversion of glycerol on Ni and Au-Ni catalysts. Catalysis in Industry, 2010, 2, 108-112.	0.3	5
245	Mechanism of the chemo–bio catalyzed cascade synthesis of R-1-phenylethyl acetate over Pd/Al2O3, lipase, and Ru-catalysts. Research on Chemical Intermediates, 2010, 36, 193-210.	1.3	5
246	Chemo-bio catalyzed synthesis of R-1-phenylethyl acetate over bimetallic PdZn catalysts, lipase, and Ru/Al2O3. Part II. Kinetics and Catalysis, 2011, 52, 77-81.	0.3	5
247	Role of the concentration and nature of grafted groups in the adsorption of hydrocarbon vapors on silica modified by monofunctional polyfluoroalkylsilanes. Russian Journal of Physical Chemistry A, 2012, 86, 437-446.	0.1	5
248	Sulfated Zirconia-catalyzed Alkylation of Phenol with Camphene and Isomerization of n-butane. Mendeleev Communications, 2014, 24, 98-99.	0.6	5
249	Incorporation of carbon dioxide into molecules of acetylene hydrocarbons on heterogeneous Ag-containing catalysts. Russian Chemical Bulletin, 2015, 64, 2796-2801.	0.4	5
250	Metathesis of C5–C8 Terminal Olefins on Re2O7/Al2O3 Catalysts. Catalysis Letters, 2016, 146, 1033-1039.	1.4	5
251	Effect of the conditions of anodizing on the morphology of nanotitania. Russian Journal of Physical Chemistry A, 2017, 91, 213-216.	0.1	5
252	Nickel catalysis for hydrogenation of p-dinitrobenzene to p-phenylenediamine. Russian Chemical Bulletin, 2017, 66, 34-38.	0.4	5

#	Article	IF	CITATIONS
253	Control of the properties of catalysts for methane aromatization by synthesizing ZSM-5 zeolites with different crystallite sizes. Russian Chemical Bulletin, 2017, 66, 2073-2080.	0.4	5
254	Gold-Doped Fe/TiO2 Catalysts: A Case of Extra-Low Gold Loading in Glycerol Oxidation. Russian Journal of Physical Chemistry A, 2018, 92, 2143-2147.	0.1	5
255	Influence of the electronic state of the metals in Fe–Pt/SiO2 catalysts on the performance of hydrogenation of phenylacetylene. Mendeleev Communications, 2019, 29, 666-668.	0.6	5
256	Dicationic disiloxane ionic liquids. Mendeleev Communications, 2020, 30, 114-116.	0.6	5
257	Nanorolls Decorated with Nanotubes as a Novel Type of Nanostructures: Fast Anodic Oxidation of Amorphous Fe–Cr–B Alloy in Hydrophobic Ionic Liquid. ACS Applied Materials & Interfaces, 2021, 13, 2025-2032.	4.0	5
258	Unusual behavior of bimetallic nanoparticles in catalytic processes of hydrogenation and selective oxidation. Pure and Applied Chemistry, 2020, 92, 989-1006.	0.9	5
259	Microwave-Assisted Conversion of Carbohydrates. Molecules, 2022, 27, 1472.	1.7	5
260	Modifying HKUST-1 Crystals for Selective Ethane Adsorption Using Ionic Liquids as Synthesis Media. Crystals, 2022, 12, 279.	1.0	5
261	Hydroamination of Phenylacetylene with Aniline over Gold Nanoparticles Embedded in the Boron Imidazolate Framework BIF-66 and Zeolitic Imidazolate Framework ZIF-67. ACS Applied Materials & Interfaces, 2021, 13, 59803-59819.	4.0	5
262	Investigation of the state of palladium in the potassium palladium-11-tungstosilicate/alumina system by diffuse-reflectance IR spectroscopy. Russian Chemical Bulletin, 1999, 48, 1261-1265.	0.4	4
263	Isomerization ofn-butane on the SO4/ZrO2 catalyst promoted by IV Period metals. Russian Chemical Bulletin, 1999, 48, 1266-1269.	0.4	4
264	Isomerization ofn-pentane andn-hexane on modified zeolites. Russian Chemical Bulletin, 2000, 49, 1838-1841.	0.4	4
265	Title is missing!. Russian Chemical Bulletin, 2002, 51, 255-258.	0.4	4
266	The transformations of toluene on alumina and bifunctional catalysts. Russian Journal of Physical Chemistry A, 2006, 80, 551-556.	0.1	4
267	Effect of electron beam irradiation on the formation of active sites in the Pt/H pentasil catalyst. Kinetics and Catalysis, 2008, 49, 765-769.	0.3	4
268	Adsorption of water, diethyl ether, and acetonitrile on silicas with grafted perfluorohexyl coatings. Russian Journal of Physical Chemistry A, 2009, 83, 290-297.	0.1	4
269	State of the metal and the mechanism of transformations of alkanes on platinum-containing zeolite catalysts. Petroleum Chemistry, 2009, 49, 53-58.	0.4	4
270	Chemo-bio catalyzed synthesis of R-1-phenylethyl acetate over bimetallic PdZn catalysts, lipase, and Ru/Al2O3. part I. Kinetics and Catalysis, 2011, 52, 72-76.	0.3	4

#	Article	IF	CITATIONS
271	New metal organic framework structures based on 2,5-pyridinedicarboxylate ligands and Zn2+ ions. Russian Journal of Physical Chemistry A, 2011, 85, 462-465.	0.1	4
272	Catalysts with noble metals based on super-cross-linked polystyrene for the hydrogenation of aromatic hydrocarbons. Catalysis in Industry, 2012, 4, 155-161.	0.3	4
273	Hydrogenation of heptanal over heterogeneous catalysts. Mendeleev Communications, 2013, 23, 219-221.	0.6	4
274	Intramolecular hydroamination of 2-(2-phenylethynyl)aniline catalyzed by gold nanoparticles. Russian Chemical Bulletin, 2015, 64, 2821-2829.	0.4	4
275	Fischer—Tropsch synthesis in ionic liquids. Russian Chemical Bulletin, 2015, 64, 2841-2844.	0.4	4
276	Autothermal Methane Oxidative Coupling Process over La ₂ O ₃ /MgO Catalysts. Chemical Engineering and Technology, 2015, 38, 2243-2252.	0.9	4
277	Reduction of carbon dioxide by hydrogen on metal–carbon catalysts under supercritical conditions. Russian Journal of Physical Chemistry A, 2016, 90, 2352-2357.	0.1	4
278	Selective hydrogenation of 1,3-pentadiene over mono- and bimetallic sulfidized Ni(Cu)—S/SiO2 catalysts. Russian Chemical Bulletin, 2016, 65, 2841-2844.	0.4	4
279	Synthesis and adsorption properties of the cation exchange forms of OFF-type zeolite. Russian Journal of Physical Chemistry A, 2016, 90, 652-657.	0.1	4
280	Phase composition of Mg—Al mixed oxides, their activity and selectivity in the ethanol condensation reaction. Russian Chemical Bulletin, 2017, 66, 666-672.	0.4	4
281	Spectroscopic investigation of redox and acidic properties of Co-substituted aluminophosphate CoAPO-11. Mendeleev Communications, 2018, 28, 354-356.	0.6	4
282	Redox behavior of novel FeOx/Pd/SiO2 catalytic nanomaterials. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1913-1922.	2.0	4
283	Antioxidant Properties of Amino Acid Derivatives of Fullerene C60. Russian Journal of Physical Chemistry A, 2019, 93, 2152-2157.	0.1	4
284	Selective Liquid Phase Hydrogenation of Aromatic Nitro Compounds in the Presence of Fe–Cu Nanoparticles. Russian Journal of Physical Chemistry A, 2020, 94, 1180-1183.	0.1	4
285	Study of Fe- and Ni-Containing Lignins by Diffuse Reflectance IR Spectroscopy and X-ray Diffraction. Russian Journal of Physical Chemistry A, 2020, 94, 725-730.	0.1	4
286	Microwave-Assisted Synthesis, Characterization and Modeling of CPO-27-Mg Metal-Organic Framework for Drug Delivery. Molecules, 2021, 26, 426.	1.7	4
287	Adsorption of phenol and 2,4-dichlorophenol on carbon-containing sorbent produced from sugar cane bagasse. Mendeleev Communications, 2021, 31, 121-122.	0.6	4
288	Gasification of hydrolysis lignin with CO2 in the presence of Fe and Co compounds. Mendeleev Communications, 2022, 32, 402-404.	0.6	4

#	Article	IF	CITATIONS
289	Influence of the support on the state of nickel in the Ni/SiO2, Ni/ZrO2, and Ni/SO4/ZrO2 oxide systems studied by diffuse-reflectance IR spectroscopy. Russian Chemical Bulletin, 1998, 47, 394-397.	0.4	3
290	n-Alkane isomerization on heteropolyacids. Russian Chemical Bulletin, 2000, 49, 1726-1731.	0.4	3
291	Title is missing!. Kinetics and Catalysis, 2002, 43, 99-106.	0.3	3
292	The state of palladium in the system potassium palladium-11-tungstosilicate on aluminosilicate as studied by DRIFT spectroscopy. Russian Chemical Bulletin, 2003, 52, 2382-2385.	0.4	3
293	Cyclic voltammetry as a tool for characterization of supported VIII group metal catalysts. Applied Catalysis A: General, 2006, 309, 52-61.	2.2	3
294	Structures of active sites for alkane transformations over the Pt/HZSM-5 and Pt/NaZSM-5 catalysts. Russian Chemical Bulletin, 2008, 57, 1160-1165.	0.4	3
295	Catalysis à la combi. Russian Journal of General Chemistry, 2010, 80, 2527-2540.	0.3	3
296	Silver and palladium nanoparticles-containing products of the low-temperature wave conversion of an energetic material: Catalytic activity in piperylene hydrogenation. Kinetics and Catalysis, 2011, 52, 277-281.	0.3	3
297	Co-metathesis of ethylene and olefinic compounds in ionic liquids. Mendeleev Communications, 2011, 21, 329-330.	0.6	3
298	Opening of the rings of aromatic and naphthene hydrocarbons: A new way of improving the quality of fuels. Catalysis in Industry, 2011, 3, 358-369.	0.3	3
299	Partial methane oxidation into synthesis gas over catalysts supported on meshed metallic materials. Catalysis in Industry, 2013, 5, 14-20.	0.3	3
300	Meso- and macroporous materials modified with amines for CO2 storage. Russian Journal of Organic Chemistry, 2014, 50, 1556-1557.	0.3	3
301	Preparation of composite membranes on a ceramic base with supported metal-organic framework structure of MOF-199 and study of their adsorption properties. Nanotechnologies in Russia, 2014, 9, 416-422.	0.7	3
302	Three-component Au—Chitosan—SiO2 systems as heterogeneous catalysts for intramolecular cyclization of 2-(2-phenylethynyl)aniline. Russian Chemical Bulletin, 2015, 64, 2816-2820.	0.4	3
303	Why organic chemistry is important for a physical chemist?. Russian Journal of Organic Chemistry, 2016, 52, 1072-1075.	0.3	3
304	Electrochemical modification of steel by platinum nanoparticles. Doklady Chemistry, 2016, 470, 297-301.	0.2	3
305	Reactive Adsorption of Sulfur Compounds on Transition Metal Polycationâ€Exchanged Zeolites for Desulfurization of Hydrocarbon Streams. Energy Technology, 2017, 5, 1627-1637.	1.8	3
306	Synthesis and acid-base properties of Mg-saponite. Mendeleev Communications, 2017, 27, 407-409.	0.6	3

#	Article	IF	CITATIONS
307	Synthesis of Functionally Substituted Cyano Carbonyl Compounds. Russian Journal of General Chemistry, 2017, 87, 2887-2890.	0.3	3
308	Selective Hydrogenation of the C≡C to С=Ð; Bond on Fe-Containing Catalysts. Russian Journal of Physical Chemistry A, 2018, 92, 2412-2416.	0.1	3
309	Synthesis of Nanotitania on the Surface of Titanium Metal in Ionic Liquids: Role of Water Additions. Doklady Chemistry, 2018, 479, 41-44.	0.2	3
310	Solid-State NMR of C60 Amino Acid Derivatives. Russian Journal of Physical Chemistry A, 2019, 93, 308-310.	0.1	3
311	Electric heating of the Mo–V–Fe–Nb–O catalyst bed in oxidative dehydrogenation of ethane. Mendeleev Communications, 2020, 30, 657-659.	0.6	3
312	СО2 Adsorbents Deposited on Silicon Carbide. Russian Journal of Physical Chemistry A, 2020, 94, 1482-1489.	0.1	3
313	Production of hydrogen by supercritical water reforming of O-containing organic components of plant raw materials. Biomass and Bioenergy, 2020, 143, 105849.	2.9	3
314	Platinum Nanoparticles on Sintered Metal Fibers Are Efficient Structured Catalysts in Partial Methane Oxidation into Synthesis Gas. ACS Omega, 2020, 5, 5078-5084.	1.6	3
315	Impact of Pretreatment of Metal Glass Fe70Cr15B15 on Anodization in 1-butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Metals, 2020, 10, 583.	1.0	3
316	Facile Redox Synthesis of Novel Bimetallic Crn+/Pd0 Nanoparticles Supported on SiO2 and TiO2 for Catalytic Selective Hydrogenation with Molecular Hydrogen. Catalysts, 2021, 11, 583.	1.6	3
317	IR spectroscopic investigation of internal silanol groups in different zeolites with pentasil structure. Mendeleev Communications, 2021, 31, 526-528.	0.6	3
318	Effect of ultra-low amount of gold in oxide-supported bimetallic Au–Fe and Au–Cu catalysts on liquid-phase aerobic glycerol oxidation in water. Catalysis Science and Technology, 2021, 11, 5881-5897.	2.1	3
319	Charge-assisted chalcogen bonding in 2-(4-substituted benzoyl)thiazolo[3,2-a]pyridin-4-ium bromides. Dyes and Pigments, 2022, 197, 109898.	2.0	3
320	Understanding the Working Mechanism of the Novel HKUST-1@BPS Composite Materials as Stationary Phases for Liquid Chromatography. Polymers, 2022, 14, 1373.	2.0	3
321	IR-Spectroscopic Study of Complex Formation of Nitrogen Oxides (NO, N2O) with Cationic Forms of Zeolites and the Reactivity of Adsorbed Species in CO and CH4 Oxidation. Molecules, 2022, 27, 55.	1.7	3
322	Synthesis and some properties of titanium-containing silica gels. Reaction Kinetics and Catalysis Letters, 1993, 50, 193-198.	0.6	2
323	Study of the state of rhodium in the potassium rhodiumundecatungstosilicate/alumina system by diffuse-reflectance IR spectroscopy. Russian Chemical Bulletin, 2000, 49, 1174-1177.	0.4	2
324	Formation of small rhodium metal particles on the surface of a carbon support. Kinetics and Catalysis, 2005, 46, 114-122.	0.3	2

#	Article	IF	CITATIONS
325	Transformations of cyclohexane and benzene on the bimetallic Ru-Pt oxide catalysts. Russian Chemical Bulletin, 2006, 55, 656-660.	0.4	2
326	Oxidative coupling of methane in the redox cyclic mode over the Ag–La2O3/SiO2 catalytic system. Mendeleev Communications, 2010, 20, 92-94.	0.6	2
327	Steam reforming of glycerol over composites containing nickel nanoparticles. Catalysis in Industry, 2011, 3, 189-191.	0.3	2
328	Ionic liquid [BMIM]PF6 as a medium for the selective hydrogenation of 1,4-diacetoxybut-2-yne on the Pd-containing catalysts. Russian Chemical Bulletin, 2011, 60, 179-181.	0.4	2
329	Effect of the surface condition of silicas with grafted monofunctional polyfluoroalkylsilanes on the adsorption of polar molecules. Russian Journal of Physical Chemistry A, 2013, 87, 1367-1373.	0.1	2
330	Spectral studies of catalysts of oxidative dehydrogenation of dimethyl ether to dimethoxyethane. Russian Journal of Physical Chemistry A, 2013, 87, 1249-1251.	0.1	2
331	Catalytic oxidative coupling of dimethyl ether under supercritical conditions. Russian Journal of Physical Chemistry B, 2013, 7, 810-813.	0.2	2
332	Adsorbents of СО2 based on amine-modified porous materials. Russian Chemical Bulletin, 2015, 64, 2958-2962.	0.4	2
333	The role of hole defects in the formation of active sites in the catalyst for methane dehydroaromatization. Russian Chemical Bulletin, 2015, 64, 269-277.	0.4	2
334	Study of ecotoxicity of silver nanoparticles using algae. Russian Journal of Physical Chemistry A, 2016, 90, 2217-2220.	0.1	2
335	Physicochemical properties of surfaces of SBA-15 silicas, according to adsorption-static, gas-chromatographic, and IR spectroscopic data. Russian Journal of Physical Chemistry A, 2016, 90, 191-200.	0.1	2
336	Physicochemical properties of the surfaces of silica species. Russian Journal of Physical Chemistry A, 2017, 91, 217-225.	0.1	2
337	Oxidative dehydrogenation of dimethyl ether to 1,2-dimethoxyethane over oxide catalysts. Mendeleev Communications, 2017, 27, 72-74.	0.6	2
338	Formation of Nanostructures on the Nickel Metal Surface in Ionic Liquid under Anodizing. Russian Journal of Physical Chemistry A, 2018, 92, 965-967.	0.1	2
339	Synthesis and Properties of Hydroxyl-Containing Ionic Liquids. Russian Journal of Organic Chemistry, 2018, 54, 143-145.	0.3	2
340	Cresol Izomerization in the Presence of Acid Catalysts. Russian Journal of Physical Chemistry A, 2018, 92, 262-264.	0.1	2
341	Nitroaldol reaction catalyzed by arylhydrazone di- and triorganotin(IV) complexes. Journal of Organometallic Chemistry, 2018, 867, 98-101.	0.8	2
342	Effect of Vanadium and Zirconium on the Formation of Metastable Phases in Aluminum and Iron Alloys. Russian Journal of Physical Chemistry A, 2018, 92, 2368-2373.	0.1	2

#	Article	IF	CITATIONS
343	The Oxidation of Carbon Monoxide as an Integrated Part of the Coupled Alkane Oxidation Process: Gas-Phase Oxidation over Supported Metal-Complex Catalysts. Kinetics and Catalysis, 2018, 59, 150-159.	0.3	2
344	Electrochemical Synthesis of Polyphenylenes in Room-Temperature Ionic Liquid Butylpyridinium Chloride–AlCl3. Russian Journal of Physical Chemistry A, 2019, 93, 2323-2325.	0.1	2
345	Synthesis and Description of Small Gold and Palladium Nanoparticles on CeO2 Substrate: FT- IR Spectroscopy Data. Journal of Surface Investigation, 2020, 14, 447-458.	0.1	2
346	New Horizons in Zeolites and Zeolite-Like Materials. Crystals, 2020, 10, 714.	1.0	2
347	Gold-Containing Catalysts Based on Mesoporous Metal–Organic Frameworks of the MIL Type for Regioselective Hydroamination Reaction of Phenylacetylene. Petroleum Chemistry, 2020, 60, 895-902.	0.4	2
348	Ring Opening of Naphthenic Hydrocarbons on Zeolite Catalysts. Russian Journal of Physical Chemistry A, 2020, 94, 317-322.	0.1	2
349	Studying the Structural and Adsorption Properties of High-Temperature Adsorbents of Carbon Dioxide Supported on Various Carriers. Russian Journal of Physical Chemistry A, 2020, 94, 177-181.	0.1	2
350	Electrochemical Behavior of Benzene, Diphenyl, and p-Terphenyl in Room-Temperature Ionic Liquid N-Butylpyridinium Chloride–AlCl3. Russian Journal of Physical Chemistry A, 2021, 95, 217-220.	0.1	2
351	Dicationic disiloxane ionic liquids as heat transfer agents in vacuo. Russian Chemical Bulletin, 2021, 70, 301-308.	0.4	2
352	Dynamics of Oxidation of Reduced Forms of CO2 under Electrochemical and Open-Ðjircuit Conditions on Polycrystalline Pt in H2CO3. Metals, 2021, 11, 274.	1.0	2
353	Increasing the yield of aromatic hydrocarbons in aromatization of n-butane over Ga/H-ZSM-5 zeolite using a palladium membrane. Mendeleev Communications, 2021, 31, 230-232.	0.6	2
354	Fresh-Water Mollusks as Biomonitors for Ecotoxicity of Nanomaterials. Nanomaterials, 2021, 11, 944.	1.9	2
355	The Role Played by Ga-Pt Nanoparticles in the Aromatization of Lower Alkanes on ZSM-5 Zeolites. Russian Journal of Physical Chemistry A, 2008, 82, 612-618.	0.1	2
356	Impact of composition and structural parameters on the catalytic activity of MFI type titanosilicalites. Dalton Transactions, 2022, 51, 3439-3451.	1.6	2
357	Deep oxidation of methane on granulated and monolith copper—manganese oxide catalysts. Russian Chemical Bulletin, 2001, 50, 1589-1592.	0.4	1
358	Interaction of a Co6 cluster with oxides of different nature: a quantum chemical study. Russian Chemical Bulletin, 2009, 58, 273-279.	0.4	1
359	Dehydroxylation of glycerol on nickel-containing catalysts: A method of utilization of glycerol in biodiesel production. Catalysis in Industry, 2010, 2, 315-319.	0.3	1
360	Mechanistic investigations of the reaction network in chemo-bio catalyzed synthesis of R-1-phenylethyl acetate. Kinetics and Catalysis, 2010, 51, 809-815.	0.3	1

#	Article	IF	CITATIONS
361	Optimizing the parameters of the steam-carbon dioxide conversion of methane by Gibbs energy minimization. Russian Journal of Physical Chemistry A, 2011, 85, 202-210.	0.1	1
362	Optimization of equilibrium carbon dioxide methane reforming parameters by the Gibbs free energy minimization method. Russian Journal of Physical Chemistry A, 2012, 86, 741-746.	0.1	1
363	State of Ni in catalysts for glycerol hydrogenation and methane steam reforming as studied by X-ray absorption spectroscopy. Russian Journal of Physical Chemistry A, 2013, 87, 935-940.	0.1	1
364	Effect of adamantane-containing additives on the isomerization of n-heptane in the ionic liquid trimethylammonium hydrochloride-aluminum chloride. Russian Journal of Physical Chemistry A, 2013, 87, 20-22.	0.1	1
365	Spectral study of catalysts for the oxidative condensation of methane. Russian Journal of Physical Chemistry A, 2013, 87, 2005-2012.	0.1	1
366	Conversion of carbon dioxide to propionaldehyde over cobalt and rhodium nanoparticles supported on MIL-53 (Al) metal–organic framework. Russian Journal of Organic Chemistry, 2016, 52, 1728-1732.	0.3	1
367	Synthesis of alkenyl 3-hydroxy-2-naphthoates. Russian Journal of Physical Chemistry A, 2016, 90, 2393-2396.	0.1	1
368	Microwave-activated carbon dioxide reforming of propane over Ni/TiO2 catalysts. Russian Chemical Bulletin, 2016, 65, 2820-2824.	0.4	1
369	Selective conversion of methane to aromatic hydrocarbons on large crystallite zeolite catalysts with mesoporous structure. Russian Chemical Bulletin, 2017, 66, 2066-2072.	0.4	1
370	Oxidation of carbon monoxide catalyzed by Pd(α,α-bipy)Cl2—CuCl2—C3F7COOH/γ-Al2O3: oscillations in the flow reactor. Russian Chemical Bulletin, 2017, 66, 1934-1936.	e 0.4	1
371	Formation of Finely Dispersed Structures in Aluminum Alloys with Niobium in the Presence of Scandium. Russian Journal of Physical Chemistry A, 2018, 92, 2362-2367.	0.1	1
372	Catalytic Conversion of Glycerol in the Presence of Ni/F–Al2O3 Catalyst. Russian Journal of Physical Chemistry A, 2018, 92, 2351-2353.	0.1	1
373	Unusual Behavior of Fluorescein under Conditions of Electrochemical Oxidation in an Aqueous Phosphate Buffer Solution. Russian Journal of Physical Chemistry A, 2019, 93, 168-172.	0.1	1
374	Structure of Metal Organic Frameworks and the Periodicity of Their Properties. Russian Journal of Physical Chemistry A, 2019, 93, 2331-2339.	0.1	1
375	Hydroamination of Phenylacetylene on Gold-Containing Catalytic Systems Supported on Substrates Modified with Ionic Liquids under Conditions of Microwave Activation. Russian Journal of Physical Chemistry A, 2021, 95, 512-515.	0.1	1
376	Studying the States of Platinum in Deposited Heteropoly Compounds via Diffuse Reflection IR Spectroscopy. Russian Journal of Physical Chemistry A, 2021, 95, 949-953.	0.1	1
377	Decalin Ring Opening on Heterogeneous Me/Saponite Nanocatalysts (Me = Rh, Ru, and Ir). Industrial & Engineering Chemistry Research, 2021, 60, 7802-7815.	1.8	1
378	Kinetics of Oxidation of Reduced Forms of Adsorbed CO2 on a (pc)Pt Electrode in Saturated H2CO3 under Quasi-Equilibrium Conditions: The Effect of the Potential Oscillations. Journal of the Electrochemical Society, 2021, 168, 076505.	1.3	1

#	Article	IF	CITATIONS
379	Influence of the electronic state of the metals in Cu–Pt/SiO 2 catalysts on the catalytic properties in selective hydrogenation of the C≡C bond. Journal of Chemical Technology and Biotechnology, 2021, 96, 3436.	1.6	1
380	Nitrous Oxide Adsorption and Decomposition on Zeolites and Zeolite-like Materials. Molecules, 2022, 27, 398.	1.7	1
381	Synthesis and Crystal Structure of a New Chiral Hydrogen-Bonded Organic Framework ZIOC-2. Crystal Growth and Design, 2022, 22, 2547-2556.	1.4	1
382	Effect of steaming on composition of acid centers and catalytic properties of superhigh-silica zeolites in pseudocumene isomerization. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 633-636.	0.0	0
383	Effect of dealumination of pentasil HTsVM in conditions of catalysis and regeneration. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1121-1125.	0.0	0
384	Catalytic properties, surface composition, and acidity of Ga-ZSM-5 catalysts for aromatization of lower paraffins. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 2373-2378.	0.0	0
385	Modification of silica gels with small admixtures of titanium ions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1940-1943.	0.0	0
386	Synthesis of ferrosilicates with the pentasil structure. Chemistry and Technology of Fuels and Oils, 1992, 28, 88-90.	0.2	0
387	Modified heterosilicates (Fe, B)-catalytic characteristics and IR spectra. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1004-1010.	0.0	0
388	State of iridium supported on SO4/ZrO2. Russian Chemical Bulletin, 1998, 47, 2124-2128.	0.4	0
389	IR spectroscopic investigation of structural hydroxyl groups in Wâ^'Si heteropolycompound supported on Al2O3. Russian Chemical Bulletin, 1999, 48, 1994-1996.	0.4	0
390	Effect of the nature of zeolite and modifying additives on the activity of zeolite-containing catalysts inn-butane isomerization. Russian Chemical Bulletin, 1999, 48, 1270-1273.	0.4	0
391	Metathesis of Hex-1-ene in Ionic Liquids ChemInform, 2004, 35, no.	0.1	0
392	Metathesis of Hex-1-ene ion lonic Liquids Catalyzed by WCl6 ChemInform, 2005, 36, no.	0.1	0
393	Electrocatalytic oxidation of 2,4,5,7-tetrabromofluorescein and 2,7-dichlorofluorescein by oxygen adsorbed on platinum. Moscow University Chemistry Bulletin, 2007, 62, 96-98.	0.2	0
394	An IR spectroscopic study of acid centers on the surface of Al, Zr silica gels. Russian Journal of Physical Chemistry A, 2009, 83, 2115-2118.	0.1	0
395	IR-spectroscopic study of lewis acid centers on polyzirconiummethylsiloxanes. Russian Journal of Physical Chemistry A, 2010, 84, 1226-1229.	0.1	0
396	Novel dicarboxylate heteroaromatic metal organic frameworks as the catalyst supports for the hydrogenation reaction. Studies in Surface Science and Catalysis, 2010, , 707-710.	1.5	0

#	Article	IF	CITATIONS
397	Conversion of methane to synthesis-gas on conventional and membrane Pt/TiO2 catalysts. Russian Chemical Bulletin, 2015, 64, 48-52.	0.4	0
398	Ecotoxicity of organic stabilizers for metal nanoparticles. Russian Journal of Organic Chemistry, 2016, 52, 1847-1848.	0.3	0
399	Carboxylation of 2-methylbutyn-3-ol-2 on Ag- and Cu-containing catalysts. Russian Journal of Physical Chemistry A, 2016, 90, 1729-1732.	0.1	0
400	Study of ecotoxicity of silver nanoparticles using daphnids. Russian Journal of Physical Chemistry A, 2016, 90, 2449-2452.	0.1	0
401	Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids. Dalton Transactions, 2017, 46, 4430-4434.	1.6	0
402	Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	0
403	Ligands Based on 2,3,6-O-Cellulose Derivatives for Catalysts of Asymmetric Hydrogenation. Russian Journal of Physical Chemistry A, 2019, 93, 34-38.	0.1	0
404	Ethane Oxidation in the Presence of Copper-Containing Zirconia Modified with Acid Additives. Russian Journal of Physical Chemistry A, 2019, 93, 2140-2145.	0.1	0
405	Spectral Study of the Inverse Effect of Metal on the Properties of a Carrier. Russian Journal of Physical Chemistry A, 2020, 94, 2342-2348.	0.1	0
406	Electrochemical Behavior of an Amorphous Alloy in an Ionic Liquid and in Aqueous Media. Russian Journal of Physical Chemistry A, 2020, 94, 2379-2381.	0.1	0
407	Selective dimerization of cyclohexene over a Re2O7-B2O3/Al2O3 catalyst under mild conditions. Molecular Catalysis, 2021, 502, 111398.	1.0	0
408	Enhancement of Efficiency of Pd/Al2O3Catalysts in Selective Hydrogenation of Sec-Butylbenzene by Modification with H2SO4 or H2WO4. Metals, 2021, 11, 281.	1.0	0
409	Benzene Adsorption on Nanoporous Silica Gels with Grafted Polyfluoroalkyl Layers and the Wettability. Russian Journal of Physical Chemistry A, 2021, 95, 775-785.	0.1	0
410	Dry reforming of lignin: the effect of impregnation with iron. Mendeleev Communications, 2021, 31, 376-378.	0.6	0
411	Studying the Stability of Supported Heteropoly Compounds Using Data from Diffuse Reflectance Infrared Spectroscopy. Russian Journal of Physical Chemistry A, 2021, 95, 1560-1568.	0.1	0
412	Activity of Oxygen on HZSM-5 Type Zeolite in Oxidation of Benzene and Its Derivatives. Russian Journal of Physical Chemistry A, 2021, 95, 1798-1802.	0.1	0
413	Hybrids of Metal–Organic Frameworks as Organized Supramolecular Nano-reactors. RSC Catalysis Series, 2019, , 479-502.	0.1	0
414	Comparison of the Electrochemical Behavior of Iodide Ion in Hydrophobic/Hydrophilic Ionic Liquids. Journal of the Electrochemical Society, 2022, 169, 026521.	1.3	0

#	Article	IF	CITATIONS
415	Hydrogenation of 1,3-pentadiene on modified Pd-containing catalysts. Kataliz V Promyshlennosti, 2022, 22, 31-37.	0.2	0
416	Hydrogenation of 3-Methyl-3-buten-1-yl Acetate to Alcohols in the Presence of Bimetallic CuË—Pt Catalysts. Russian Journal of Organic Chemistry, 2022, 58, 720-723.	0.3	0
417	Selective Hydrogenation of 1,3-Pentadiene on Mono- and Bimetallic Nickel and Palladium Catalysts. Russian Journal of Organic Chemistry, 2022, 58, 706-709.	0.3	0