
## Chaofan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8287854/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications, 2012, 48, 380-382.                                                   | 2.2  | 862       |
| 2  | Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 2019, 10, 1789.                                                                                    | 5.8  | 419       |
| 3  | One-step preparation of nitrogen-doped graphenequantum dots from oxidized debris of graphene oxide. Journal of Materials Chemistry B, 2013, 1, 39-42.                                                                | 2.9  | 380       |
| 4  | A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a<br>Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.                             | 7.2  | 266       |
| 5  | Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nature Communications, 2020, 11, 5591.                                                      | 5.8  | 202       |
| 6  | Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive<br>Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.                                              | 7.8  | 189       |
| 7  | A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4,<br>437-448.                                                                                                         | 3.2  | 139       |
| 8  | Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue<br>and Cells at Room Temperature. Chemistry of Materials, 2019, 31, 9887-9894.                                    | 3.2  | 137       |
| 9  | Rapid Synthesis of Carbon Dots by Hydrothermal Treatment of Lignin. Materials, 2016, 9, 184.                                                                                                                         | 1.3  | 125       |
| 10 | A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New Journal of Chemistry, 2017, 41, 3930-3938.                                                     | 1.4  | 120       |
| 11 | Construction of Carbon Dots with Colorâ€Tunable Aggregationâ€Induced Emission by Nitrogenâ€Induced<br>Intramolecular Charge Transfer. Advanced Materials, 2021, 33, e2104872.                                        | 11.1 | 112       |
| 12 | Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied<br>Materials & Interfaces, 2020, 12, 21009-21019.                                                                  | 4.0  | 102       |
| 13 | Fabrication of Reduced Graphene Oxide and Sliver Nanoparticle Hybrids for Raman Detection of<br>Absorbed Folic Acid: A Potential Cancer Diagnostic Probe. ACS Applied Materials & Interfaces, 2013,<br>5, 4760-4768. | 4.0  | 94        |
| 14 | Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot<br>aggregates. Journal of Materials Chemistry C, 2017, 5, 6243-6250.                                                           | 2.7  | 91        |
| 15 | Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochimica Acta, 2017, 237, 109-118.                                                           | 2.6  | 91        |
| 16 | Fabrication of a graphene oxide–gold nanorod hybrid material by electrostatic self-assembly for<br>surface-enhanced Raman scattering. Carbon, 2013, 51, 255-264.                                                     | 5.4  | 90        |
| 17 | The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon, 2020, 165, 306-316.                                                                                 | 5.4  | 89        |
| 18 | Temperature-responsive conversion of thermally activated delayed fluorescence and<br>room-temperature phosphorescence of carbon dots in silica. Journal of Materials Chemistry C, 2020,<br>8, 5744-5751.             | 2.7  | 86        |

| #  | Article                                                                                                                                                                                                                                                                                 | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale, 2018, 10, 5997-6004.                                                                                                                            | 2.8 | 85        |
| 20 | Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol–gel<br>technology and its application in extraction of estrogens. Talanta, 2010, 83, 337-343.                                                                                                     | 2.9 | 84        |
| 21 | Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.                                                                                        | 6.6 | 84        |
| 22 | Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon<br>Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.                                                                                       | 3.6 | 76        |
| 23 | Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of<br>Materials Chemistry C, 2017, 5, 8014-8021.                                                                                                                                              | 2.7 | 73        |
| 24 | Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow<br>Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.                                                                                                          | 7.2 | 73        |
| 25 | pH-Responsive carbon dots with red emission for real-time and visual detection of amines. Journal of<br>Materials Chemistry C, 2020, 8, 11563-11571.                                                                                                                                    | 2.7 | 72        |
| 26 | Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. Journal of Materials Chemistry, 2012, 22, 8121.                                                                                                                             | 6.7 | 71        |
| 27 | Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate. Journal of Materials Chemistry C, 2019, 7, 354-361.                                                    | 2.7 | 70        |
| 28 | Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. Journal of Hazardous Materials, 2021, 410, 124534.                                                                                                                         | 6.5 | 69        |
| 29 | Precipitating CsPbBr <sub>3</sub> quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. Journal of Materials Chemistry C, 2019, 7, 13139-13148. | 2.7 | 68        |
| 30 | Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of<br>Colloid and Interface Science, 2019, 555, 607-614.                                                                                                                                       | 5.0 | 66        |
| 31 | Near-Ultraviolet to Near-Infrared Fluorescent Nitrogen-Doped Carbon Dots with Two-Photon and Piezochromic Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27920-27927.                                                                                                      | 4.0 | 63        |
| 32 | A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a<br>Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.                                                                                                                       | 1.6 | 62        |
| 33 | Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.                                                                                                                      | 5.2 | 61        |
| 34 | Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice ( <i>Oryza sativa</i> L.) through<br>Promoting Nutrition Assimilation and the Defense System. ACS Applied Materials & Interfaces,<br>2020, 12, 33575-33585.                                                        | 4.0 | 56        |
| 35 | Selfâ€Quenchingâ€Resistant Red Emissive Carbon Dots with High Stability for Warm White Lightâ€Emitting<br>Diodes with a High Color Rendering Index. Advanced Optical Materials, 2020, 8, 2000251.                                                                                       | 3.6 | 56        |
| 36 | Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. Journal of Power Sources, 2019, 427, 129-137.                                                                                                                          | 4.0 | 55        |

| #  | Article                                                                                                                                                                                                                    | IF                 | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 37 | Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal, 2021, 426, 130728.                        | 6.6                | 55        |
| 38 | A facile one-step method to produce MoS <sub>2</sub> quantum dots as promising bio-imaging materials. RSC Advances, 2016, 6, 25605-25610.                                                                                  | 1.7                | 54        |
| 39 | Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 2021, 422, 130114.                                                        | 6.6                | 54        |
| 40 | Rapid Intracellular Growth of Gold Nanostructures Assisted by Functionalized Graphene Oxide and<br>Its Application for Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2012, 84, 10338-10344.                   | 3.2                | 53        |
| 41 | Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.                                                                                        | 2.8                | 49        |
| 42 | Construction of Ni3S2 wrapped by rGO on carbon cloth for flexible supercapacitor application.<br>Journal of Alloys and Compounds, 2019, 777, 806-811.                                                                      | 2.8                | 48        |
| 43 | Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature<br>Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.                             | 4.5                | 46        |
| 44 | Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their<br>Applications in Antiyellowing and Resistance of Photodegradation. ACS Applied Materials &<br>Interfaces, 2019, 11, 6634-6643. | 4.0                | 45        |
| 45 | Cascade Resonance Energy Transfer for the Construction of Nanoparticles with Multicolor Long<br>Afterglow in Aqueous Solutions for Information Encryption and Bioimaging. Advanced Optical<br>Materials, 2022, 10, .       | 3.6                | 43        |
| 46 | Thermoluminescence and Temperatureâ€Dependent Afterglow Properties in<br><scp><scp>BaSi</scp></scp> <sub>2</sub> <scp><scp>O</scp>2<scp>NJournal of the American Ceramic Society, 2013, 96, 3149-3154.</scp></scp>         | p>< <b>su9</b> b>2 |           |
| 47 | Regulating the morphology and luminescence properties of CsPbBr <sub>3</sub> perovskite quantum dots through the rigidity of glass network structure. Journal of Materials Chemistry C, 2020, 8, 17374-17382.              | 2.7                | 41        |
| 48 | PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced<br>Photosynthesis of Lettuce. ACS Sustainable Chemistry and Engineering, 2020, 8, 3938-3949.                                           | 3.2                | 41        |
| 49 | Red, green and blue aggregationâ€induced emissive carbon dots. Chinese Chemical Letters, 2021, 32,<br>3927-3930.                                                                                                           | 4.8                | 41        |
| 50 | Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of<br>NaYF <sub>4</sub> :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8,<br>9751-9762.                          | 3.2                | 40        |
| 51 | Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior. Journal of Materials Science and Technology, 2014, 30, 290-294.                                           | 5.6                | 39        |
| 52 | One-pot solvothermal synthesis of water-soluble boron nitride nanosheets and fluorescent boron nitride quantum dots. Materials Letters, 2019, 234, 306-310.                                                                | 1.3                | 38        |
| 53 | Energy Transfer Mediated Enhancement of Roomâ€īemperature Phosphorescence of Carbon Dots<br>Embedded in Matrixes. Advanced Optical Materials, 2022, 10, .                                                                  | 3.6                | 38        |
| 54 | Surface functional carbon dots: chemical engineering applications beyond optical properties. Journal of Materials Chemistry C, 2020, 8, 16282-16294.                                                                       | 2.7                | 36        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film. Chemical Engineering Journal, 2021, 425, 131653.                                                                                               | 6.6 | 36        |
| 56 | Hydrothermal synthesis of oxygen-deficiency tungsten oxide quantum dots with excellent photochromic reversibility. Applied Surface Science, 2019, 480, 404-409.                                                                                                   | 3.1 | 35        |
| 57 | Small nitrogen-doped carbon dots as efficient nanoenhancer for boosting the electrochemical performance of three-dimensional graphene. Journal of Colloid and Interface Science, 2019, 536, 628-637.                                                              | 5.0 | 34        |
| 58 | Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl <sub>2</sub> O <sub>4</sub><br>Composites by Inorganic Defect Triplet-State Energy Transfer. ACS Applied Materials & Interfaces,<br>2021, 13, 34705-34713.                                         | 4.0 | 34        |
| 59 | Rapid room-temperature preparation of MoO <sub>3â^'x</sub> quantum dots by ultraviolet irradiation for photothermal treatment and glucose detection. New Journal of Chemistry, 2018, 42, 18533-18540.                                                             | 1.4 | 33        |
| 60 | Ni <sub>2</sub> P Nanoflake Array/Three Dimensional Graphene Architecture as Integrated<br>Freeâ€5tanding Anode for Boosting the Sodiation Capability and Stability. ChemElectroChem, 2019, 6,<br>404-412.                                                        | 1.7 | 33        |
| 61 | Construction of NaYF <sub>4</sub> :Yb,Er(Tm)@CDs composites for enhancing red and NIR upconversion emission. Journal of Materials Chemistry C, 2019, 7, 6231-6235.                                                                                                | 2.7 | 32        |
| 62 | Bioinspired Highly Crumpled Porous Carbons with Multidirectional Porosity for High Rate<br>Performance Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6,<br>12716-12726.                                                       | 3.2 | 31        |
| 63 | Carbon Dots with Intrinsic Bioactivities for Photothermal Optical Coherence Tomography,<br>Tumor‧pecific Therapy and Postoperative Wound Management. Advanced Healthcare Materials, 2022,<br>11, e2101448.                                                        | 3.9 | 29        |
| 64 | Size-controlled synthesis of fluorescent tungsten oxide quantum dots via one-pot ethanol-thermal<br>strategy for ferric ions detection and bioimaging. Sensors and Actuators B: Chemical, 2018, 255,<br>290-298.                                                  | 4.0 | 28        |
| 65 | Synthesis of modified carbon dots with performance of ultraviolet absorption used in sunscreen.<br>Optics Express, 2019, 27, 7629.                                                                                                                                | 1.7 | 27        |
| 66 | Preparation and properties of dual-mode luminescent<br>NaYF <sub>4</sub> :Yb,Tm@SiO <sub>2</sub> /carbon dot nanocomposites. Journal of Materials<br>Chemistry C, 2018, 6, 10360-10366.                                                                           | 2.7 | 26        |
| 67 | Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device. Journal of Colloid and Interface Science, 2019, 545, 195-199.                                                           | 5.0 | 24        |
| 68 | Hierarchical Ni2P nanosheets anchored on three-dimensional graphene as self-supported anode<br>materials towards long-life sodium-ion batteries. Journal of Alloys and Compounds, 2020, 817, 152751.                                                              | 2.8 | 22        |
| 69 | Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects.<br>Journal of Materials Chemistry C, 2020, 8, 8935-8941.                                                                                                        | 2.7 | 22        |
| 70 | Development of magnetic octadecylsilane particles as solidâ€phase extraction adsorbent for the<br>determination of fatâ€soluble vitamins in fruit juiceâ€milk beverage by capillary liquid chromatography.<br>Journal of Separation Science, 2010, 33, 2145-2152. | 1.3 | 21        |
| 71 | The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.                                                                                                                                                             | 6.4 | 21        |
| 72 | pHâ€dependent surfaceâ€enhanced Raman scattering of aromatic molecules on graphene oxide. Journal of<br>Raman Spectroscopy, 2013, 44, 75-80.                                                                                                                      | 1.2 | 18        |

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Understanding the modulation effect and surface chemistry in a heteroatom incorporated graphene-like matrix toward high-rate lithium–sulfur batteries. Nanoscale, 2021, 13, 14777-14784.                                                                                             | 2.8 | 18        |
| 74 | Threeâ€Dimensional Graphene Network Decorated with Highly Symmetrical Cuboid<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> F <sub>3</sub> Particles: High Rate<br>Capability and Cycling Stability for Sodiumâ€ion Batteries. ChemElectroChem, 2021, 8, 866-872. | 1.7 | 18        |
| 75 | On-Line Concentration Methods for Analysis of Fat-Soluble Vitamins by MEKC. Chromatographia, 2010, 72, 95-100.                                                                                                                                                                       | 0.7 | 17        |
| 76 | Red-emissive carbon dots from spinach: Characterization and application in visual detection of time.<br>Journal of Luminescence, 2020, 227, 117534.                                                                                                                                  | 1.5 | 17        |
| 77 | Insights into the deep-tissue photothermal therapy in near-infrared II region based on tumor-targeted<br>MoO2 nanoaggregates. Science China Materials, 2020, 63, 1085-1098.                                                                                                          | 3.5 | 17        |
| 78 | In Situ Growth of High-Quality CsPbBr <sub>3</sub> Quantum Dots with Unusual Morphology inside a<br>Transparent Glass with a Heterogeneous Crystallization Environment for Wide Gamut Displays. ACS<br>Applied Materials & Interfaces, 2022, 14, 30029-30038.                        | 4.0 | 17        |
| 79 | Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward<br>Solar Spectrum‧imulated White Lightâ€Emitting Devices. Small, 2020, 16, e1905266.                                                                                                 | 5.2 | 16        |
| 80 | Molybdenum oxide nano-dumplings with excellent stability for photothermal cancer therapy and as a controlled release hydrogel. New Journal of Chemistry, 2019, 43, 14281-14290.                                                                                                      | 1.4 | 14        |
| 81 | Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.                                                                                                                                                             | 1.4 | 13        |
| 82 | Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. Journal of Colloid and Interface Science, 2019, 543, 156-163.                                                                                                                                  | 5.0 | 12        |
| 83 | Preparation of Reduced Graphene Oxide and Copper Sulfide Nanoplates Composites as Efficient<br>Photothermal Agents for Ablation of Cancer Cells. Nano, 2015, 10, 1550123.                                                                                                            | 0.5 | 11        |
| 84 | Room temperature long afterglow from boron oxide: A boric acid calcined product. Materials Letters, 2020, 276, 128226.                                                                                                                                                               | 1.3 | 11        |
| 85 | Synthesis of Carbon Dots with Carbogenic π-Conjugated Domains for Full-Band UV Shielding. ACS<br>Applied Nano Materials, 2022, 5, 9140-9149.                                                                                                                                         | 2.4 | 10        |
| 86 | Morphologyâ€controlled Synthesis of Molybdenum Oxide with Tunable Plasmon Absorption for<br>Phothermal Therapy of Cancer. ChemNanoMat, 2020, 6, 1407-1416.                                                                                                                           | 1.5 | 9         |
| 87 | Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability. Optics Express, 2020, 28, 19550.                                                                                                                                 | 1.7 | 9         |
| 88 | Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow<br>Materials. Angewandte Chemie, 2021, 133, 22427-22433.                                                                                                                              | 1.6 | 8         |
| 89 | Controllable Synthesis of Carbon Dots@CaCO <sub>3</sub> Composites: Tunable Morphology, UV<br>Absorption Properties, and Application as an Ultraviolet Absorber. Crystal Growth and Design, 2022,<br>22, 4357-4365.                                                                  | 1.4 | 8         |
| 90 | Extraction of graphitic carbon quantum dots by hydrothermal treatment commercially activated carbon: the role of cation–l€ interaction. Journal of Nanoparticle Research, 2015, 17, 1.                                                                                               | 0.8 | 7         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Assembly of shell/core CDs@CaF <sub>2</sub> nanocomposites to endow polymers with multifunctional properties. Nanotechnology, 2019, 30, 155601.                                                                                | 1.3 | 7         |
| 92 | Modulating the local structure of glass to promote <i>in situ</i> precipitation of perovskite<br>CsPbBr <sub>3</sub> quantum dots by introducing a network modifier. Journal of Materials Chemistry<br>C, 2022, 10, 8634-8641. | 2.7 | 7         |
| 93 | Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability.<br>Nanoscale, 2020, 12, 10771-10780.                                                                                          | 2.8 | 6         |
| 94 | A rapid construction strategy of NaYF <sub>4</sub> :Yb,Er@CDs nanocomposites for dual-mode anti-counterfeiting. Materials Advances, 2022, 3, 4542-4547.                                                                        | 2.6 | 6         |
| 95 | Effects of Ni Particle Size on Hydrogen Storage of Ni-Doped High Surface Area Activated Carbon.<br>Australian Journal of Chemistry, 2013, 66, 548.                                                                             | 0.5 | 2         |
| 96 | Multifunctional FeP/Spongy Carbon Modified Separator with Enhanced Polysulfide Immobilization and<br>Conversion for Flameâ€Retardant Lithium‣ulfur Batteries. ChemistrySelect, 2021, 6, 7098-7102.                             | 0.7 | 2         |
| 97 | Different Kinds of Citric Acid Based Carbon Dots and Their Enhancement of the Growth of Italian<br>Lettuce. ACS Agricultural Science and Technology, 2022, 2, 684-692.                                                         | 1.0 | 2         |
| 98 | The Influences of a Targeting Peptide on the Ovarian Cancer Cell Motility. International Journal of<br>Peptide Research and Therapeutics, 2017, 23, 25-36.                                                                     | 0.9 | 1         |
| 99 | Bi/3DPG composite structure optimization realizes high specific capacity and rapid sodium-ion storage.<br>Frontiers of Materials Science, 2022, 16, .                                                                          | 1.1 | 1         |