Navid R Moheimani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8287163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofuels-related materials deterioration in biorefineries, transportation and internal combustion engines: a technical review. Corrosion Engineering Science and Technology, 2022, 57, 178-194.	0.7	1
2	Improving pH control and carbon dioxide utilisation efficiency in microalgae cultivation systems with the use of a Proportional-integral + dead-zone control strategy. Bioresource Technology Reports, 2022, 17, 100917.	1.5	2
3	Microalgal dewatering with focus on filtration and antifouling strategies: A review. Algal Research, 2022, 61, 102588.	2.4	19
4	Food waste digestate as a source of nitrogen for the cultivation of Dunaliella salina: influence on growth and carotenogenesis under hyper osmotic stress. Journal of Applied Phycology, 2022, 34, 101-112.	1.5	4
5	Microalgae-based circular economy approach to upcycle fire extinguisher powder waste. Resources, Conservation and Recycling, 2022, 180, 106210.	5.3	7
6	Utilisation of Seaweeds in the Australian Market – Commercialisation Strategies: Current Trends and Future Prospects. , 2022, , 265-294.		4
7	Comparison between continuous and daytime mixing for the treatment of raw anaerobically digested abattoir effluent (ADAE) and microalgae production in open raceway ponds. Bioresource Technology Reports, 2022, 17, 100981.	1.5	7
8	Carotenoid production of Botryococcus braunii CCAP 807/2 under different growth conditions. Journal of Applied Phycology, 2022, 34, 1177-1188.	1.5	4
9	Membrane fouling control for sustainable microalgal biodiesel production: A review. Renewable and Sustainable Energy Reviews, 2022, 161, 112335.	8.2	27
10	Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications—a review. Journal of Basic Microbiology, 2022, 62, 1030-1043.	1.8	9
11	Techno-economic modelling of high-value metabolites and secondary products from microalgae cultivated in closed photobioreactors with supplementary lighting. Algal Research, 2022, 65, 102733.	2.4	11
12	Reporting of methods for automated devices: A systematic review and recommendation for studies using <scp>FlowCam</scp> for phytoplankton. Limnology and Oceanography: Methods, 2022, 20, 400-427.	1.0	15
13	The third-generation biodiesel blends corrosion susceptibility of oxide particle-reinforced Si-rich aluminum alloy matrix composites. Corrosion Reviews, 2022, 40, 475-490.	1.0	2
14	Temperature regulation schemes for improving biomass productivity and nutrient removal rate in outdoor raceway ponds. Bioresource Technology Reports, 2022, 19, 101147.	1.5	1
15	How harvesting frequency influence the biomass and lipid productivities of Nannochloropsis sp Algal Research, 2021, 53, 102074.	2.4	8
16	Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients. Biomass and Bioenergy, 2021, 145, 105945.	2.9	22
17	Geochemistry of large benthic foraminifera Amphisorus hemprichii as a high-resolution proxy for lead pollution in coastal environments. Marine Pollution Bulletin, 2021, 162, 111918.	2.3	5
18	Evaluation of electrocoagulation, flocculation, and sedimentation harvesting methods on microalgae consortium grown in anaerobically digested abattoir effluent. Journal of Applied Phycology, 2021, 33, 1631-1642.	1.5	9

#	Article	IF	CITATIONS
19	Marine health of the Arabian Gulf: Drivers of pollution and assessment approaches focusing on desalination activities. Marine Pollution Bulletin, 2021, 164, 112085.	2.3	26
20	Anaerobic digestate abattoir effluent (ADAE), a suitable source of nutrients for Arthrospira platensis cultivation. Algal Research, 2021, 54, 102216.	2.4	17
21	Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). Science of the Total Environment, 2021, 775, 145853.	3.9	35
22	Batch cultivation of microalgae in anaerobic digestate exhibits functional changes in bacterial communities impacting nitrogen removal and wastewater treatment. Algal Research, 2021, 57, 102338.	2.4	20
23	Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417, 113345.	2.0	24
24	E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania. Metals, 2021, 11, 1313.	1.0	64
25	Can CO2 addition improve the tertiary treatment of anaerobically digested abattoir effluent (ADAE) by Scenedesmus sp. (Chlorophyta)?. Algal Research, 2021, 58, 102379.	2.4	19
26	Recent advancement on hydrogen production from macroalgae via supercritical water gasification. Bioresource Technology Reports, 2021, 16, 100844.	1.5	26
27	Monochromatic light filters to enhance biomass and carotenoid productivities of Dunaliella salina in raceway ponds. Bioresource Technology, 2021, 340, 125689.	4.8	21
28	Effective nutrient removal and metabolite accumulation by C. vulgaris cultivated using digested food waste and brine. Environmental Technology and Innovation, 2021, 24, 101935.	3.0	6
29	Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate. Algal Research, 2021, 60, 102509.	2.4	8
30	Effect of medium recycling, culture depth, and mixing duration on D. salina growth. Algal Research, 2021, 60, 102495.	2.4	6
31	A Comparison of Methods for the Characterisation of Waste-Printed Circuit Boards. Metals, 2021, 11, 1935.	1.0	12
32	Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation. Algal Research, 2020, 45, 101731.	2.4	37
33	Light spectral effect on a consortium of filamentous green algae grown on anaerobic digestate piggery effluent (ADPE). Algal Research, 2020, 46, 101723.	2.4	7
34	Screening, acclimation and ammonia tolerance of microalgae grown in food waste digestate. Journal of Applied Phycology, 2020, 32, 3775-3785.	1.5	44
35	Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy, 2020, 196, 105433.	1.8	29
36	Outdoor phycocyanin production in a standalone thermally-insulated photobioreactor. Bioresource Technology, 2020, 315, 123865.	4.8	18

#	Article	IF	CITATIONS
37	Can luminescent solar concentrators increase microalgal growth on anaerobically digested food effluent?. Journal of Applied Phycology, 2020, 32, 3703-3710.	1.5	9
38	Adjustments of the photosynthetic unit and compensation mechanisms of tolerance to high ammonia concentration in Chlorella sp. grown in food waste digestate. Algal Research, 2020, 52, 102106.	2.4	9
39	Does growing Nannochloropsis sp. in innovative flat plate photobioreactors result in changes to fatty acid and protein composition?. Journal of Applied Phycology, 2020, 32, 3619-3629.	1.5	4
40	Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity. Applied Energy, 2020, 275, 115403.	5.1	17
41	Transferability of Australian diatoms to clothing: Assessment of several extraction methods on different fabric types under laboratory conditions. Forensic Science International, 2020, 312, 110297.	1.3	1
42	Non-destructive extraction of lipids from Botryococcus braunii and its potential to reduce pond area and nutrient costs. Algal Research, 2020, 47, 101833.	2.4	16
43	Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). Journal of CO2 Utilization, 2020, 38, 273-281.	3.3	29
44	A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Research, 2020, 47, 101841.	2.4	81
45	Effect of organic carbon source and nutrient depletion on the simultaneous production of a high value bioplastic and a specialty pigment by Arthrospira platensis. Algal Research, 2020, 47, 101844.	2.4	18
46	Algal Cultivation for Treating Wastewater in African Developing Countries: A Review. Clean - Soil, Air, Water, 2020, 48, 2000052.	0.7	18
47	Microalgae: A potential sustainable commercial source of sterols. Algal Research, 2020, 46, 101772.	2.4	79
48	Temperature and salinity effects on growth and fatty acid composition of a halophilic diatom, Amphora sp. MUR258 (Bacillariophyceae). Journal of Applied Phycology, 2020, 32, 977-987.	1.5	18
49	Red luminescent solar concentrators to enhance Scenedesmus sp. biomass productivity. Algal Research, 2020, 45, 101771.	2.4	20
50	Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. Journal of Applied Phycology, 2019, 31, 3545-3556.	1.5	38
51	Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. Bioresource Technology, 2019, 291, 121801.	4.8	35
52	Co-cultivation and stepwise cultivation of Chaetoceros muelleri and Amphora sp. for fucoxanthin production under gradual salinity increase. Journal of Applied Phycology, 2019, 31, 1535-1544.	1.5	27
53	Repetitive extraction of botryococcene from Botryococcus braunii: a study of the effects of different solvents and operating conditions. Journal of Applied Phycology, 2019, 31, 3491-3501.	1.5	9
54	Microalgae and Phototrophic Purple Bacteria for Nutrient Recovery From Agri-Industrial Effluents: Influences on Plant Growth, Rhizosphere Bacteria, and Putative Carbon- and Nitrogen-Cycling Genes. Frontiers in Plant Science, 2019, 10, 1193.	1.7	26

#	Article	IF	CITATIONS
55	Aquaponics: Alternative Types and Approaches. , 2019, , 301-330.		23
56	Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy. Biomass and Bioenergy, 2019, 127, 105274.	2.9	24
57	Continuous non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22. Algal Research, 2019, 41, 101537.	2.4	19
58	Viability of combining microalgae and macroalgae cultures for treating anaerobically digested piggery effluent. Journal of Environmental Sciences, 2019, 82, 132-144.	3.2	21
59	Techno-economic study of multi-product resource scenarios for Pleurochrysis carterae grown in open ponds in Western Australia. Algal Research, 2019, 39, 101456.	2.4	6
60	Long-term reliable culture of a halophilic diatom, Amphora sp. MUR258, in outdoor raceway ponds. Journal of Applied Phycology, 2019, 31, 2771-2778.	1.5	12
61	Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. Journal of Applied Phycology, 2019, 31, 2311-2319.	1.5	50
62	Can solar control infrared blocking films be used to replace evaporative cooling for growth of Nannochloropsis sp. in plate photobioreactors?. Algal Research, 2019, 39, 101441.	2.4	15
63	Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 2019, 39, 101433.	2.4	139
64	Life cycle analysis of milking of microalgae for renewable hydrocarbon production. Computers and Chemical Engineering, 2019, 121, 510-522.	2.0	13
65	Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renewable and Sustainable Energy Reviews, 2019, 101, 47-59.	8.2	42
66	Sustainable phycocyanin production from Arthrospira platensis using solar-control thin film coated photobioreactor. Biochemical Engineering Journal, 2019, 141, 232-238.	1.8	26
67	Techno-economic analysis of milking of Botryococcus braunii for renewable hydrocarbon production. Algal Research, 2018, 31, 194-203.	2.4	30
68	The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 2018, 30, 1453-1464.	1.5	60
69	Application of poly(2â€hydroxyethyl methacrylate) hydrogel disks for the immobilization of three different microalgal species. Journal of Chemical Technology and Biotechnology, 2018, 93, 2887-2897.	1.6	6
70	Shear Tolerance and Lipid Content of Botryococcus braunii During and Post Non-Destructive Solvent Extraction. Computer Aided Chemical Engineering, 2018, 44, 1735-1740.	0.3	3
71	Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 2018, 97, 233-258.	8.2	111
72	Comparison between jet and paddlewheel mixing for the cultivation of microalgae in anaerobic digestate of piggery effluent (ADPE). Algal Research, 2018, 35, 274-282.	2.4	9

#	Article	IF	CITATIONS
73	Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Research, 2018, 35, 362-369.	2.4	74
74	Effect of continuous and daytime mixing on Nannochloropsis growth in raceway ponds. Algal Research, 2018, 33, 190-196.	2.4	18
75	Performance of Mixed Species and Monoâ€specific Algal Diets for Culture of Larval Western School Prawns, <scp><i>Metapenaeus dalli</i></scp> . Journal of the World Aquaculture Society, 2018, 49, 845-856.	1.2	5
76	Modeling the Effect of Temperature on Microalgal Growth under Outdoor Conditions. Computer Aided Chemical Engineering, 2018, , 55-60.	0.3	7
77	Effects of temperature and salinity on larval survival and development of the western school prawn Metapenaeus dalli. International Aquatic Research, 2017, 9, 1-10.	1.5	16
78	Effects of different light spectra on the growth, productivity and photosynthesis of two acclimated strains of Nannochloropsis sp Journal of Applied Phycology, 2017, 29, 1765-1774.	1.5	27
79	Sustainable conversion of light to algal biomass and electricity: A net energy return analysis. Energy, 2017, 131, 218-229.	4.5	9
80	Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 2017, 78, 356-368.	8.2	91
81	Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii. Renewable and Sustainable Energy Reviews, 2017, 79, 1229-1240.	8.2	33
82	Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 2017, 24, 218-226.	2.4	164
83	Growth and photosynthetic activity of Botryococcus braunii biofilms. Journal of Applied Phycology, 2017, 29, 1123-1134.	1.5	23
84	Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE). Bioresource Technology, 2017, 227, 15-23.	4.8	32
85	Quantitative determination of ovarian development in penaeid prawns (Decapoda: Penaeidae). Journal of Crustacean Biology, 2017, 37, 81-89.	0.3	10
86	Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Research, 2017, 28, 66-73.	2.4	60
87	Superstructure optimization and energetic feasibility analysis of process of repetitive extraction of hydrocarbons from Botryococcus braunii – a species of microalgae. Computers and Chemical Engineering, 2017, 97, 36-46.	2.0	12
88	Potential of Milking of Microalgae Grown on Biofilm Photobioreactor for Renewable Hydrocarbon Production. Computer Aided Chemical Engineering, 2017, 40, 2497-2502.	0.3	6
89	A model for the effect of light on the growth of microalgae in outdoor condition. Computer Aided Chemical Engineering, 2017, , 2737-2742.	0.3	1
90	Selection of an Energetically More Feasible Route for Hydrocarbon Extraction from Microalgae – Milking of B. braunii as a Case Study. Computer Aided Chemical Engineering, 2016, 38, 1545-1550.	0.3	3

#	Article	IF	CITATIONS
91	Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 2016, 181, 817-831.	3.8	394
92	Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Research, 2016, 17, 268-276.	2.4	95
93	Harvesting and Dewatering of High-Productivity Bulk Microalgae Systems. , 2016, , 253-266.		4
94	Photosynthetic performance of two Nannochloropsis spp. under different filtered light spectra. Algal Research, 2016, 19, 168-177.	2.4	31
95	Sustainable cultivation of microalgae by an insulated glazed glass plate photobioreactor. Biotechnology Journal, 2016, 11, 363-374.	1.8	18
96	Bioprocess engineering of microalgae to optimize lipid production through nutrient management. Journal of Applied Phycology, 2016, 28, 3235-3250.	1.5	52
97	Larval development of the western school prawn <i>Metapenaeus dalli</i> Racek, 1957 (Crustacea:) Tj ETQq1 1	0.784314 0.2	rgBT /Overlo
98	Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. Journal of Applied Phycology, 2016, 28, 2139-2146.	1.5	60
99	Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants. Computers and Chemical Engineering, 2016, 84, 290-301.	2.0	47
100	Potentials of Exploiting Heterotrophic Metabolism for Biodiesel Oil Production by Microalgae. Biofuel and Biorefinery Technologies, 2015, , 45-61.	0.1	8
101	Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Research, 2015, 8, 121-127.	2.4	102
102	Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach. Applied Energy, 2015, 149, 379-391.	5.1	50
103	CO2 Environmental Bioremediation by Microalgae. Biofuel and Biorefinery Technologies, 2015, , 117-136.	0.1	4
104	Pathways of processing of wet microalgae for liquid fuel production: A critical review. Renewable and Sustainable Energy Reviews, 2015, 52, 1240-1250.	8.2	51
105	Comparison of continuous and day time only mixing on Tetraselmis suecica (Chlorophyta) in outdoor raceway ponds. Journal of Applied Phycology, 2015, 27, 1783-1791.	1.5	19
106	Proposal of a New Pathway for Microalgal Oil Production and its Comparison with Conventional Method. Computer Aided Chemical Engineering, 2015, , 377-382.	0.3	7
107	Potential of Converting Solar Energy to Electricity and Chemical Energy. Biofuel and Biorefinery Technologies, 2015, , 311-329.	0.1	0
108	Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 2014, 26, 247-255.	1.5	64

#	Article	IF	CITATIONS
109	Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). Journal of Applied Phycology, 2014, 26, 1453-1463.	1.5	53
110	Efficient conversion of solar energy to biomass and electricity. Aquatic Biosystems, 2014, 10, 4.	1.8	53
111	CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 2014, 6, 78-85.	2.4	99
112	Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 13-25.	1.0	294
113	Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). Journal of Applied Phycology, 2013, 25, 1653-1661.	1.5	63
114	Sustainable solar energy conversion to chemical and electrical energy. Renewable and Sustainable Energy Reviews, 2013, 27, 494-504.	8.2	61
115	Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. Journal of Applied Phycology, 2013, 25, 167-176.	1.5	78
116	Open Pond Culture Systems. , 2013, , 133-152.		74
117	Standard Methods for Measuring Growth of Algae and Their Composition. , 2013, , 265-284.		108
118	Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. Journal of Applied Phycology, 2013, 25, 387-398.	1.5	148
119	Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 47-72.	1.0	138
120	Developments of five selected microalgae companies developing 'closed' bioreactor biofuel production systems. International Journal of Innovation and Sustainable Development, 2013, 7, 367.	0.3	5
121	Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1321-1331.	1.4	72
122	Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. Journal of Applied Phycology, 2012, 24, 1681-1698.	1.5	167
123	Current research and perspectives of microalgal biofuels in Australia. Biofuels, 2012, 3, 427-439.	1.4	14
124	Microalgal biomass for bioethanol fermentation: Implications for hypersaline systems with an industrial focus. Biomass and Bioenergy, 2012, 46, 79-88.	2.9	52
125	Bioremediation and other potential applications of coccolithophorid algae: A review. Algal Research, 2012, 1, 120-133.	2.4	58
126	Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Applied Microbiology and Biotechnology, 2011, 90, 1399-1407.	1.7	62

#	Article	IF	CITATIONS
127	Coccolithophorid algae culture in closed photobioreactors. Biotechnology and Bioengineering, 2011, 108, 2078-2087.	1.7	38
128	Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. Journal of Chemical Technology and Biotechnology, 2009, 84, 1078-1083.	1.6	227
129	Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chemical Engineering Journal, 2009, 151, 73-78.	6.6	169
130	Limits to productivity of the algaPleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnology and Bioengineering, 2007, 96, 27-36.	1.7	121
131	The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. Journal of Applied Phycology, 2006, 18, 703-712.	1.5	220
132	The Influence of Micro Algae on Corrosion of Steel in Fly Ash Geopolymer Concrete: A Preliminary Study. Advanced Materials Research, 0, 626, 861-866.	0.3	9