
Luca Spogli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286971/publications.pdf Version: 2024-02-01

LUCA SPOCU

#	Article	IF	CITATIONS
1	Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Annales Geophysicae, 2009, 27, 3429-3437.	0.6	165
2	Bipolar climatology of GPS ionospheric scintillation at solar minimum. Radio Science, 2011, 46, .	0.8	114
3	Measurement of inclusive jet and dijet cross sections inÂproton-proton collisions at 7ÂTeV centre-of-mass energy withÂtheÂATLAS detector. European Physical Journal C, 2011, 71, 1.	1.4	114
4	Space weather challenges of the polar cap ionosphere. Journal of Space Weather and Space Climate, 2013, 3, A02.	1.1	112
5	Comparative analysis of spreadâ€F signature and GPS scintillation occurrences at Tucumán, Argentina. Journal of Geophysical Research: Space Physics, 2013, 118, 4483-4502.	0.8	85
6	Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Scientific Reports, 2019, 9, 20287.	1.6	85
7	Measurement of the W → â,,"ν and Z/γ * → â,,"â,," production cross sections in proton-proton collisions at \$ = 7;{ext{TeV}} \$ with the ATLAS detector. Journal of High Energy Physics, 2010, 2010, 1.	sqrt {s} 1.6	64
8	Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems. Solar Physics, 2017, 292, 1.	1.0	62
9	L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. Journal of Space Weather and Space Climate, 2015, 5, A36.	1.1	58
10	Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. Journal of Asian Earth Sciences, 2020, 188, 104097.	1.0	57
11	Neural network based model for global Total Electron Content forecasting. Journal of Space Weather and Space Climate, 2020, 10, 11.	1.1	57
12	Geospace perturbations induced by the Earth: The state of the art and future trends. Physics and Chemistry of the Earth, 2015, 85-86, 17-33.	1.2	56
13	Effects of Phase Scintillation on the GNSS Positioning Error During the September 2017 Storm at Svalbard. Space Weather, 2018, 16, 1317-1329.	1.3	53
14	Challenges to Equatorial Plasma Bubble and Ionospheric Scintillation Short-Term Forecasting and Future Aspects in East and Southeast Asia. Surveys in Geophysics, 2021, 42, 201-238.	2.1	53
15	Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 2016, 121, 12,211.	0.8	47
16	Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere, 2019, 10, 371.	1.0	46
17	Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010. Annales Geophysicae, 2011, 29, 2287-2304.	0.6	45
18	Assessing the GNSS scintillation climate over Brazil under increasing solar activity. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 105-106, 199-206.	0.6	45

#	Article	IF	CITATIONS
19	lonospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSESâ€01 and Swarm Satellites and by Local Groundâ€Based Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028368.	0.8	45
20	Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solutions, 2020, 24, 1.	2.2	43
21	Adaptive Local Iterative Filtering: A Promising Technique for the Analysis of Nonstationary Signals. Journal of Geophysical Research: Space Physics, 2018, 123, 1031-1046.	0.8	40
22	GPS scintillation and TEC gradients at equatorial latitudes in April 2006. Advances in Space Research, 2011, 47, 1750-1757.	1.2	38
23	The ionospheric irregularities climatology over Svalbard from solar cycle 23. Scientific Reports, 2019, 9, 9232.	1.6	38
24	lonospheric Disturbances Over the Indian Sector During 8 September 2017 Geomagnetic Storm: Plasma Structuring and Propagation. Space Weather, 2021, 19, e2020SW002607.	1.3	31
25	Geosystemics View of Earthquakes. Entropy, 2019, 21, 412.	1.1	29
26	Tackling ionospheric scintillation threat to GNSS in Latin America. Journal of Space Weather and Space Climate, 2011, 1, A05.	1.1	28
27	Satelliteâ€beacon Ionosphericâ€scintillation Global Model of the upper Atmosphere (SIGMA) II: Inverse modeling with high″atitude observations to deduce irregularity physics. Journal of Geophysical Research: Space Physics, 2016, 121, 9188-9203.	0.8	26
28	Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick's day storm event. Advances in Space Research, 2017, 60, 1807-1816.	1.2	23
29	Space Weather Services for Civil Aviation—Challenges and Solutions. Remote Sensing, 2021, 13, 3685.	1.8	22
30	lonospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece. Annales Geophysicae, 2018, 36, 361-371.	0.6	19
31	Performance of the ATLAS detector using first collision data. Journal of High Energy Physics, 2010, 2010, 1.	1.6	18
32	On some features characterizing the plasmasphere–magnetosphere–ionosphere system during the geomagnetic storm of 27 May 2017. Earth, Planets and Space, 2019, 71, 77.	0.9	18
33	The response of high latitude ionosphere to the 2015 St. Patrick's day storm from in situ and ground based observations. Advances in Space Research, 2018, 62, 638-650.	1.2	17
34	Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. Journal of Space Weather and Space Climate, 2019, 9, A35.	1.1	17
35	Adaptive Phase Detrending for GNSS Scintillation Detection: A Case Study Over Antarctica. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	17
36	GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – Part 2: Interhemispheric comparison. Annales Geophysicae, 2015, 33, 657-670.	0.6	16

#	Article	IF	CITATIONS
37	GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions. Annals of Geophysics, 2013, 56, .	0.5	15
38	lonospheric F-region response to the 26 SeptemberÂ2011 geomagnetic storm in the Antarctica American and Australian sectors. Annales Geophysicae, 2017, 35, 1113-1129.	0.6	13
39	Revised Accelerated Moment Release Under Test: Fourteen Worldwide Real Case Studies in 2014–2018 and Simulations. Pure and Applied Geophysics, 2020, 177, 4057-4087.	0.8	13
40	GNSS station characterisation for ionospheric scintillation applications. Advances in Space Research, 2013, 52, 1237-1246.	1.2	12
41	Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes. Radio Science, 2016, 51, 429-442.	0.8	12
42	The ESPAS e-infrastructure: Access to data from near-Earth space. Advances in Space Research, 2016, 58, 1177-1200.	1.2	12
43	Modelling ionospheric scintillation under the crest of the equatorial anomaly. Advances in Space Research, 2017, 60, 1698-1707.	1.2	12
44	A muon identification and combined reconstruction procedure for the ATLAS detector at the LHC at CERN. IEEE Transactions on Nuclear Science, 2004, 51, 3030-3033.	1.2	10
45	Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598, 400-415.	0.7	10
46	IONORING: Real-Time Monitoring of the Total Electron Content over Italy. Remote Sensing, 2021, 13, 3290.	1.8	10
47	An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite. Annals of Geophysics, 2013, 56, .	0.5	10
48	The HEPD particle detector and the EFD electric field detector for the CSES satellite. Radiation Physics and Chemistry, 2017, 137, 187-192.	1.4	9
49	Ionosphere Monitoring in South East Asia in the ERICA Study. Navigation, Journal of the Institute of Navigation, 2017, 64, 273-287.	1.7	9
50	Regional Shortâ€Term Forecasting of Ionospheric TEC and Scintillation. Radio Science, 2018, 53, 1254-1268.	0.8	9
51	The ionosphere prediction service prototype for GNSS users. Journal of Space Weather and Space Climate, 2019, 9, A41.	1.1	8
52	GNSS data filtering optimization for ionospheric observation. Advances in Space Research, 2015, 56, 2552-2562.	1.2	7
53	A statistical approach to estimate Global Navigation Satellite Systems (GNSS) receiver signal tracking performance in the presence of ionospheric scintillation. Journal of Space Weather and Space Climate, 2018, 8, A51.	1.1	7
54	Polar traveling ionospheric disturbances inferred with the B-spline method and associated scintillations in the Southern Hemisphere. Advances in Space Research, 2018, 62, 3249-3266.	1.2	7

#	Article	IF	CITATIONS
55	lonosphere monitoring in South East Asia: Activities in GINESTRA and ERICA projects. , 2015, , .		6
56	A case study of correspondence between Pc1 activity and ionospheric irregularities at polar latitudes. Earth, Planets and Space, 2020, 72, .	0.9	6
57	A Filtering Method Developed to Improve GNSS Receiver Data Quality in the CALIBRA Project. , 2014, , .		5
58	The Total Electron Content From InSAR and GNSS: A Midlatitude Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 1725-1733.	2.3	5
59	The response of high latitude ionosphere to the 2015 June 22 storm. Annals of Geophysics, 2018, 61, .	0.5	5
60	Climatology of ionospheric amplitude scintillation on GNSS signals at south American sector during solar cycle 24. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 231, 105872.	0.6	5
61	Analysis of the Regional Ionosphere at Low Latitudes in Support of the Biomass ESA Mission. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 6412-6424.	2.7	4
62	Intrinsic Mode Cross Correlation: A Novel Technique to Identify Scale-Dependent Lags Between Two Signals and Its Application to Ionospheric Science. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-3.	1.4	4
63	Analysis of the ionospheric scintillations during 20–21 January 2016 from SANAE by means of the DemoGRAPE scintillation receivers. , 2017, , .		3
64	The Ionosphere Prediction Service. Proceedings of the International Astronomical Union, 2017, 13, 352-354.	0.0	3
65	Multi-scale response of the high-latitude topside ionosphere to geospace forcing. Advances in Space Research, 2023, 72, 5490-5502.	1.2	3
66	GNSS Based Services on Cloud Environment. , 2013, , .		2
67	User-Oriented ICT Cloud Architecture for High-Accuracy GNSS-Based Services. Sensors, 2019, 19, 2635.	2.1	2
68	Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. , 2019, , .		2
69	Scintillation modeling. , 2020, , 277-299.		2
70	Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers. Annals of Geophysics, 2013, 56, .	0.5	2
71	The IDIPOS project: is a multidisciplinary data infrastructure for weather and space weather feasible?. Annals of Geophysics, 2013, 56, .	0.5	2
72	A Comparative Study of Different Phase Detrending Algorithms for Scintillation Monitoring. , 2020, , .		2

5

#	Article	IF	CITATIONS
73	Polar Data Management Based on Cloud Technology. , 2015, , .		1
74	DemoGRAPE: Managing Scientific Applications in a Cloud-Federated Environment. , 2016, , .		1
75	GPS phase scintillation and auroral electrojet currents during geomagnetic storms of March 17, 2013 and 2015. , 2017, , .		1
76	Multi-instrumental analyses of the September 2017 space weather storm over Brazil. , 2019, , .		1
77	Preface to the Special Issue on Recent Advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation. Earth and Planetary Physics, 2021, 5, 365-367.	0.4	1
78	Quo vadis, European Space Weather community?. Journal of Space Weather and Space Climate, 2021, 11, 26.	1.1	1
79	In-Situ Determination of the Performance of the ATLAS Muon Spectrometer. Nuclear Physics, Section B, Proceedings Supplements, 2008, 177-178, 326-327.	0.5	Ο
80	Low latitude scintillations: A comparison of modeling and observations within the CIGALA project. , 2011, , .		0
81	GNSS scintillation climatology at SANAE-IV, Antarctica: 2006 to 2014. , 2015, , .		Ο
82	International cloud infrastructure for space weather data management: The DemoGRAPE challenge. , 2015, , .		0
83	The use of GNSS Signals for Space Weather Monitoring and Prediction. , 2018, , .		Ο
84	Space Weather effects on GNSS at low latitudes: climatological perspectives. , 2019, , .		0
85	Regional short-term forecasting model to predict ionospheric scintillation and TEC at low latitudes. , 2019, , .		Ο
86	Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems. , 2017, , 225-280.		0