Maria Kavallaris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-99b-5p, miR-380-3p, and miR-485-3p are novel chemosensitizing miRNAs in high-risk neuroblastoma. Molecular Therapy, 2022, 30, 1119-1134.	3.7	5
2	Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density. Journal of Controlled Release, 2022, 341, 661-675.	4.8	12
3	βIII-Tubulin Structural Domains Regulate Mitochondrial Network Architecture in an Isotype-Specific Manner. Cells, 2022, 11, 776.	1.8	2
4	Application of Rapid Fluorescence Lifetime Imaging Microscopy (RapidFLIM) to Examine Dynamics of Nanoparticle Uptake in Live Cells. Cells, 2022, 11, 642.	1.8	3
5	βIII-Tubulin Gene Regulation in Health and Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 851542.	1.8	24
6	High temporal resolution RNA-seq time course data reveals widespread synchronous activation between mammalian IncRNAs and neighboring protein-coding genes. Genome Research, 2022, 32, 1463-1473.	2.4	5
7	Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale, 2021, 13, 16909-16922.	2.8	28
8	Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine. Science Advances, 2021, 7, .	4.7	3
9	Doxorubicin-Loaded Gold Nanoarchitectures as a Therapeutic Strategy against Diffuse Intrinsic Pontine Glioma. Cancers, 2021, 13, 1278.	1.7	11
10	Frontiers in the treatment of glioblastoma: Past, present and emerging. Advanced Drug Delivery Reviews, 2021, 171, 108-138.	6.6	125
11	A Covalently Crosslinked Ink for Multimaterials Dropâ€onâ€Demand 3D Bioprinting of 3D Cell Cultures. Macromolecular Bioscience, 2021, 21, e2100125.	2.1	25
12	Monitoring the heterogeneity in single cell responses to drugs using electrochemical impedance and electrochemical noise. Chemical Science, 2021, 12, 2558-2566.	3.7	3
13	Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale, 2021, 13, 11414-11426.	2.8	32
14	Systematic In Vitro Evaluation of a Library of Approved and Pharmacologically Active Compounds for the Identification of Novel Candidate Drugs for KMT2A-Rearranged Leukemia. Frontiers in Oncology, 2021, 11, 779859.	1.3	3
15	Identification of Novel Medulloblastoma Cell-Targeting Peptides for Use in Selective Chemotherapy Drug Delivery. Journal of Medicinal Chemistry, 2020, 63, 2181-2193.	2.9	18
16	Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration. British Journal of Cancer, 2020, 122, 434-444.	2.9	9
17	A 3D Bioprinter Specifically Designed for the High-Throughput Production of Matrix-Embedded Multicellular Spheroids. IScience, 2020, 23, 101621.	1.9	50
18	Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research. 2020. 80. 4129-4144.	0.4	179

#	Article	IF	CITATIONS
19	Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Advanced Healthcare Materials, 2020, 9, e2000261.	3.9	11
20	Modeling the Distribution of Diprotic Basic Drugs in Liposomal Systems: Perspectives on Malaria Nanotherapy. Frontiers in Pharmacology, 2019, 10, 1064.	1.6	7
21	When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Medicinal Chemistry, 2019, 11, 2205-2231.	1.1	8
22	A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene, 2019, 38, 3824-3842.	2.6	17
23	The Use of Star Polymer Nanoparticles for theÂDelivery of siRNA to Mouse Orthotopic Pancreatic Tumor Models. Methods in Molecular Biology, 2019, 1974, 329-353.	0.4	8
24	Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced <i>T</i> ₁ / <i>T</i> ₂ -Weighted Dual-Mode Magnetic Resonance Imaging Contrast Agent. ACS Biomaterials Science and Engineering, 2019, 5, 2555-2562.	2.6	37
25	<p>Thiol-Reactive Star Polymers Functionalized with Short Ethoxy-Containing Moieties Exhibit Enhanced Uptake in Acute Lymphoblastic Leukemia Cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 9795-9808.	3.3	8
26	Targeted Doxorubicin-Loaded Bacterially Derived Nano-Cells for the Treatment of Neuroblastoma. Molecular Cancer Therapeutics, 2018, 17, 1012-1023.	1.9	33
27	Water Soluble Antioxidant Dextran–Quercetin Conjugate with Potential Anticancer Properties. Macromolecular Bioscience, 2018, 18, e1700239.	2.1	35
28	Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle, 2018, 17, 652-668.	1.3	13
29	In vivo [64Cu]CuCl2 PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis. Theranostics, 2018, 8, 5645-5659.	4.6	18
30	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
31	Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Frontiers in Pharmacology, 2018, 9, 831.	1.6	340
32	Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotechnology, 2018, 13, 1066-1071.	15.6	244
33	A photoelectrochemical platform for the capture and release of rare single cells. Nature Communications, 2018, 9, 2288.	5.8	68
34	Visual microscope for massive genomics datasets, expanded perception and interaction. , 2018, , .		1
35	β-Tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells. Life Science Alliance, 2018, 1, e201800059.	1.3	17
36	The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Molecular Biology of the Cell, 2017, 28, 1066-1078.	0.9	19

#	Article	IF	CITATIONS
37	Tuneable catechin functionalisation of carbohydrate polymers. Carbohydrate Polymers, 2017, 169, 480-494.	5.1	26
38	Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Threeâ€Dimensional Cell Culture of Tumor Spheroids. ChemPlusChem, 2017, 82, 383-389.	1.3	19
39	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	5.7	87
40	Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Scientific Reports, 2017, 7, 7638.	1.6	26
41	6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 3-15.	1.9	20
42	An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. International Journal of Molecular Sciences, 2017, 18, 1434.	1.8	103
43	βIII-Tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis, 2016, 37, 787-798.	1.3	28
44	Effective Management of Advanced Angiosarcoma by the Synergistic Combination of Propranolol and Vinblastine-based Metronomic Chemotherapy: A Bench to Bedside Study. EBioMedicine, 2016, 6, 87-95.	2.7	100
45	A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo. Biomacromolecules, 2016, 17, 2337-2351.	2.6	68
46	Polyphenol Conjugates by Immobilized Laccase: The Green Synthesis of Dextran atechin. Macromolecular Chemistry and Physics, 2016, 217, 1488-1492.	1.1	29
47	Efficient functionalisation of dextran-aldehyde with catechin: potential applications in the treatment of cancer. Polymer Chemistry, 2016, 7, 2542-2552.	1.9	35
48	Macromolecular Hydrogen Sulfide Donors Trigger Spatiotemporally Confined Changes in Cell Signaling. Biomacromolecules, 2016, 17, 371-383.	2.6	32
49	Analyses of Tumor Burden In Vivo and Metastasis Ex Vivo Using Luciferase-Expressing Cancer Cells in an Orthotopic Mouse Model of Neuroblastoma. Methods in Molecular Biology, 2016, 1372, 61-77.	0.4	8
50	Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth. Oncotarget, 2016, 7, 47479-47493.	0.8	40
51	The BET bromodomain inhibitor exerts the most potent synergistic anticancer effects with quinone-containing compounds and anti-microtubule drugs. Oncotarget, 2016, 7, 79217-79232.	0.8	17
52	Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells. Cell Cycle, 2015, 14, 3908-3919.	1.3	24
53	Graphene Oxide - Gelatin Nanohybrids as Functional Tools for Enhanced Carboplatin Activity in Neuroblastoma Cells. Pharmaceutical Research, 2015, 32, 2132-2143.	1.7	20
54	γ-Actin plays a key role in endothelial cell motility and neovessel maintenance. Vascular Cell, 2015, 7, 2.	0.2	20

#	Article	IF	CITATIONS
55	Thymosinâ€Î²4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma. Molecular Oncology, 2015, 9, 1484-1500.	2.1	17
56	<i>TUBB3</i> /βIII-Tubulin Acts through the PTEN/AKT Signaling Axis to Promote Tumorigenesis and Anoikis Resistance in Non–Small Cell Lung Cancer. Cancer Research, 2015, 75, 415-425.	0.4	72
57	The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers. Biomaterials Science, 2015, 3, 323-335.	2.6	21
58	Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer. Oncotarget, 2015, 6, 12020-12034.	0.8	51
59	βIII-Tubulin: A novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget, 2015, 6, 2235-2249.	0.8	57
60	Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Frontiers in Physiology, 2014, 5, 2.	1.3	57
61	Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Frontiers in Physiology, 2014, 5, 141.	1.3	122
62	Microtubules and Their Role in Cellular Stress in Cancer. Frontiers in Oncology, 2014, 4, 153.	1.3	296
63	Drug delivery: Beyond active tumour targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1131-1137.	1.7	61
64	Magnetic catechin–dextran conjugate as targeted therapeutic for pancreatic tumour cells. Journal of Drug Targeting, 2014, 22, 408-415.	2.1	37
65	Dextran-Based Doxorubicin Nanocarriers with Improved Tumor Penetration. Biomacromolecules, 2014, 15, 262-275.	2.6	111
66	Computational analysis of imageâ€based drug profiling predicts synergistic drug combinations: Applications in tripleâ€negative breast cancer. Molecular Oncology, 2014, 8, 1548-1560.	2.1	12
67	Synthesis, anti-cancer and anti-inflammatory activity of novel 2-substituted isoflavenes. Bioorganic and Medicinal Chemistry, 2014, 22, 5182-5193.	1.4	5
68	Novel functional cisplatin carrier based on carbon nanotubes–quercetin nanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Advances, 2014, 4, 31378.	1.7	20
69	Dual Bioresponsive Mesoporous Silica Nanocarrier as an "AND―Logic Gate for Targeted Drug Delivery Cancer Cells. Advanced Functional Materials, 2014, 24, 6999-7006.	7.8	105
70	Effects of a Novel Long Noncoding RNA, IncUSMycN, on N-Myc Expression and Neuroblastoma Progression. Journal of the National Cancer Institute, 2014, 106, .	3.0	98
71	Identification of plasma Complement C3 as a potential biomarker for neuroblastoma using a quantitative proteomic approach. Journal of Proteomics, 2014, 96, 1-12.	1.2	19
72	Effective Delivery of siRNA into Cancer Cells and Tumors Using Well-Defined Biodegradable Cationic Star Polymers. Molecular Pharmaceutics, 2013, 10, 2435-2444.	2.3	94

#	Article	IF	CITATIONS
73	Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release. ACS Nano, 2013, 7, 10175-10189.	7.3	160
74	Assessment of Cholesterol-Derived <i>lonic</i> Copolymers as Potential Vectors for Gene Delivery. Biomacromolecules, 2013, 14, 4135-4149.	2.6	7
75	Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. Chemical Communications, 2013, 49, 4190-4192.	2.2	130
76	Concentration- and schedule-dependent effects of chemotherapy on the angiogenic potential and drug sensitivity of vascular endothelial cells. Angiogenesis, 2013, 16, 373-386.	3.7	50
77	Partial depletion of gammaâ€actin suppresses microtubule dynamics. Cytoskeleton, 2013, 70, 148-160.	1.0	16
78	TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation and dynamic nuclear localization. Cell Cycle, 2013, 12, 889-898.	1.3	49
79	Cytoskeleton and Human Disease. , 2012, , .		11
80	Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules. Molecular Pharmaceutics, 2012, 9, 3046-3061.	2.3	63
81	Synthesis, self-assembly and stimuli responsive properties of cholesterol conjugated polymers. Polymer Chemistry, 2012, 3, 2057.	1.9	29
82	Evolution of Resistance to Aurora Kinase B Inhibitors in Leukaemia Cells. PLoS ONE, 2012, 7, e30734.	1.1	15
83	The retinoid signalling molecule, TRIM16, is repressed during squamous cell carcinoma skin carcinogenesis <i>in vivo</i> and reduces skin cancer cell migration <i>in vitro</i> . Journal of Pathology, 2012, 226, 451-462.	2.1	36
84	TRIM16 Acts as an E3 Ubiquitin Ligase and Can Heterodimerize with Other TRIM Family Members. PLoS ONE, 2012, 7, e37470.	1.1	90
85	Dicer-Labile PEG Conjugates for siRNA Delivery. Biomacromolecules, 2011, 12, 4301-4310.	2.6	20
86	Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation. Polymer Chemistry, 2011, 2, 385-393.	1.9	34
87	Block Co-polymer Nanoparticles with Degradable Cross-Linked Core and Low-Molecular-Weight PEG Corona for Anti-tumour Drug Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1001-1022.	1.9	6
88	A crisis in the making? Education, ageing populations and the future of the medical research workforce. Medical Education, 2011, 45, 200-207.	1.1	3
89	Targeting βIII-Tubulin in Glioblastoma Multiforme: From Cell Biology and Histopathology to Cancer Therapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 719-728.	0.9	25
90	γâ€Actin regulates cell migration and modulates the ROCK signaling pathway. FASEB Journal, 2011, 25, 4423-4433.	0.2	52

#	Article	IF	CITATIONS
91	Identification of Glycan Structure Alterations on Cell Membrane Proteins in Desoxyepothilone B Resistant Leukemia Cells. Molecular and Cellular Proteomics, 2011, 10, M111.009001.	2.5	81
92	Specific β-Tubulin Isotypes Can Functionally Enhance or Diminish Epothilone B Sensitivity in Non-Small Cell Lung Cancer Cells. PLoS ONE, 2011, 6, e21717.	1.1	38
93	Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget, 2011, 2, 797-809.	0.8	189
94	Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 2010, 10, 194-204.	12.8	930
95	ENMD-1198, a New Analogue of 2-Methoxyestradiol, Displays Both Antiangiogenic and Vascular-Disrupting Properties. Molecular Cancer Therapeutics, 2010, 9, 1408-1418.	1.9	45
96	Microtubule Dynamics, Mitotic Arrest, and Apoptosis: Drug-Induced Differential Effects of βIII-Tubulin. Molecular Cancer Therapeutics, 2010, 9, 1339-1348.	1.9	89
97	βIII-Tubulin Is a Multifunctional Protein Involved in Drug Sensitivity and Tumorigenesis in Non–Small Cell Lung Cancer. Cancer Research, 2010, 70, 4995-5003.	0.4	99
98	Metronomic chemotherapy: new rationale for new directions. Nature Reviews Clinical Oncology, 2010, 7, 455-465.	12.5	553
99	Anti-fouling magnetic nanoparticles for siRNA delivery. Journal of Materials Chemistry, 2010, 20, 255-265.	6.7	123
100	The cyclin-dependent kinase inhibitor, p21 WAF1 , promotes angiogenesis by repressing gene transcription of thioredoxin-binding protein 2 in cancer cells. Carcinogenesis, 2009, 30, 1865-1871.	1.3	23
101	The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. Cancer Letters, 2009, 277, 82-90.	3.2	31
102	Microtubules: A dynamic target in cancer therapy. IUBMB Life, 2008, 60, 165-170.	1.5	171
103	Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics, 2008, 9, 363.	1.2	116
104	Potential Mechanisms of Resistance to Microtubule Inhibitors. Seminars in Oncology, 2008, 35, S22-S27.	0.8	34
105	Acid-Labile Core Cross-Linked Micelles for pH-Triggered Release of Antitumor Drugs. Biomacromolecules, 2008, 9, 1826-1836.	2.6	180
106	A Role for Altered Microtubule Polymer Levels in Vincristine Resistance of Childhood Acute Lymphoblastic Leukemia Xenografts. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 434-442.	1.3	22
107	Tubulin-Targeted Drug Action: Functional Significance of Class II and Class IVb β-Tubulin in <i>Vinca</i> Alkaloid Sensitivity. Cancer Research, 2008, 68, 9817-9824.	0.4	57
108	Class I β-tubulin mutations in 2-methoxyestradiol-resistant acute lymphoblastic leukemia cells: implications for drug-target interactions. Molecular Cancer Therapeutics, 2008, 7, 3150-3159.	1.9	16

#	Article	IF	CITATIONS
109	Perceptions in health and medical research careers: the Australian Society for Medical Research Workforce Survey. Medical Journal of Australia, 2008, 188, 520-524.	0.8	15
110	The Cytoskeleton as a Therapeutic Target in Childhood Acute Leukemia:Obstacles and Opportunities. Current Drug Targets, 2007, 8, 739-749.	1.0	14
111	Class III β-Tubulin Mediates Sensitivity to Chemotherapeutic Drugs in Non–Small Cell Lung Cancer. Cancer Research, 2007, 67, 9356-9363.	0.4	202
112	A pedigree with autosomal dominant thrombocytopenia, red cell macrocytosis, and an occurrence of t(12:21) positive pre-B acute lymphoblastic leukemia. Blood Cells, Molecules, and Diseases, 2007, 39, 107-114.	0.6	6
113	Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia – Anin vivo study. Proteomics, 2006, 6, 1681-1694.	1.3	84
114	Neuronal-associated microtubule proteins class III beta-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Molecular Cancer Therapeutics, 2004, 3, 1137-46.	1.9	28
115	Proteome Analysis of Vinca Alkaloid Response and Resistance in Acute Lymphoblastic Leukemia Reveals Novel Cytoskeletal Alterations. Journal of Biological Chemistry, 2003, 278, 45082-45093.	1.6	79