Xue Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286727/publications.pdf

Version: 2024-02-01

183	10,220 citations	56	92
papers		h-index	g-index
185	185	185	10395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Research, 2022, 15, 818-837.	5.8	90
2	Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chemical Engineering Journal, 2022, 427, 131010.	6.6	25
3	N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core–shell structure as high-efficiency room temperature NO2 gas sensor. Journal of Hazardous Materials, 2022, 423, 127120.	6.5	30
4	ZnBr2 mediated transformation from nonluminescent Cs4PbBr6 to green-emitting Zn-doped CsPbBr3/Cs4PbBr6 nanocrystals for electroluminescent light-emitting diodes. Chemical Engineering Journal, 2022, 433, 133556.	6.6	12
5	Aluminum-doped lead-free double perovskite Cs2AgBiCl6 nanocrystals with ultrahigh stability towards white light emitting diodes. Materials Research Bulletin, 2022, 147, 111645.	2.7	21
6	White Light Afterglow in Carbon Dots Achieved via Synergy between the Room‶emperature Phosphorescence and the Delayed Fluorescence. Small, 2022, 18, e2105415.	5. 2	44
7	Bright and Efficient Pure Red Perovskite Nanocrystals Lightâ€Emitting Devices via In Situ Modification. Advanced Functional Materials, 2022, 32, .	7.8	24
8	In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy, 2022, 93, 106815.	8.2	22
9	Vertical profile of aerosol number size distribution during a haze pollution episode in Hefei, China. Science of the Total Environment, 2022, 814, 152693.	3.9	13
10	A multi-platform sensor for selective and sensitive H2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles. Journal of Hazardous Materials, 2022, 426, 128075.	6.5	41
11	Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass. Science China Materials, 2022, 65, 1586-1593.	3.5	17
12	Synergistic Regulation Effect of Nitrate and Calcium Ions for Highly Luminescent and Robust αâ€CsPbI ₃ Perovskite. Small, 2022, 18, e2106147.	5.2	7
13	Improved hole injection for CsPbI3 nanocrystals based light-emitting diodes via coevaporation of hole transport layer. Applied Physics Letters, 2022, 120, .	1.5	8
14	Efficient and Stable CF ₃ PEAI-Passivated CsPbI ₃ QDs toward Red LEDs. ACS Applied Materials & District Sub>3	4.0	20
15	Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics, 2022, 12, 2580-2597.	4.6	30
16	Anti-counterfeiting applications by photochromism induced modulation of reversible upconversion luminescence in TiO ₂ :Yb ³⁺ ,Er ³⁺ ceramic. Journal of Materials Chemistry C, 2022, 10, 6243-6251.	2.7	26
17	Efficient Radiative Enhancement in Perovskite Lightâ€Emitting Devices through Involving a Novel Sandwich Localized Surface Plasmon Structure. Small Methods, 2022, 6, e2200163.	4.6	9
18	Toward Broad Spectral Response Inverted Perovskite Solar Cells: Insulating Quantum utting Perovskite Nanophosphors and Multifunctional Ternary Organic Bulkâ€Heterojunction. Advanced Energy Materials, 2022, 12, .	10.2	21

#	Article	IF	CITATIONS
19	Reducedâ€Dimensional Engineering toward 2D Râ€P (OAm) ₂ CsPb ₂ Br ₇ Perovskite by Metal Ion Enabled Ligands Confinement Effect. Advanced Materials Interfaces, 2022, 9, .	1.9	4
20	Highly Stable and Efficient Mn ²⁺ Doping Zero-Dimension Cs ₂ Zn _{<i>x</i>} Pb _{1â€"<i>x</i>} Cl ₄ Alloyed Nanorods toward White Electroluminescent Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2379-2387.	2.1	5
21	A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light: Science and Applications, 2022, 11, 91.	7.7	61
22	Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15, 6019-6025.	5.8	53
23	Mesoporous Mn–Fe oxyhydroxides for oxygen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3559-3565.	3.0	20
24	Entirely Reversible Photochromic Glass with High Coloration and Luminescence Contrast for 3D Optical Storage. ACS Energy Letters, 2022, 7, 2060-2069.	8.8	44
25	Narrowband Near-Infrared Photodetectors Based on Perovskite Waveguide Devices. Journal of Physical Chemistry Letters, 2022, 13, 6057-6063.	2.1	7
26	Diverse scenarios selective perception of H2S via cobalt sensitized MOF filter membrane coated Three-Dimensional metal oxide sensor. Chemical Engineering Journal, 2022, 450, 138014.	6.6	20
27	High-dispersed Fe2O3/Fe nanoparticles residing in 3D honeycomb-like N-doped graphitic carbon as high-performance room-temperature NO2 sensor. Journal of Hazardous Materials, 2021, 405, 124252.	6.5	32
28	Bright red YCl3-promoted CsPbl3 perovskite nanorods towards efficient light-emitting diode. Nano Energy, 2021, 81, 105615.	8.2	33
29	Dual-color emitting Mn ²⁺ ion doped (PEA) ₂ PbBr ₄ perovskite towards white light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 937-943.	3.2	25
30	Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion. Nano Research, 2021, 14, 1053-1060.	5.8	49
31	Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125972.	2.3	24
32	Solution-Processed Efficient Perovskite Nanocrystal Light-Emitting Device Utilizing Doped Hole Transport Layer. Journal of Physical Chemistry Letters, 2021, 12, 94-100.	2.1	24
33	Mn2+ ions doped lead-free zero-dimensional K3SbCl6 perovskite nanocrystals towards white light emitting diodes. Chemical Engineering Journal, 2021, 413, 127415.	6.6	33
34	Co ₃ O ₄ @PEI/Ti ₃ C ₂ T _x MXene nanocomposites for a highly sensitive NO _x gas sensor with a low detection limit. Journal of Materials Chemistry A, 2021, 9, 6335-6344.	5.2	84
35	Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature. Applied Surface Science, 2021, 550, 149368.	3.1	49
36	Efficient and Stable Mg ²⁺ -Doped CsPbCl ₃ Nanocrystals for Violet LEDs. Journal of Physical Chemistry Letters, 2021, 12, 8203-8211.	2.1	20

#	Article	IF	CITATIONS
37	Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. Journal of Hazardous Materials, 2021, 416, 125830.	6.5	97
38	Ceriumâ€Doped Perovskite Nanocrystals for Extremely Highâ€Performance Deepâ€Ultraviolet Photoelectric Detection. Advanced Optical Materials, 2021, 9, 2100423.	3.6	12
39	Self-powered UV photodetectors based on CsPbCl3 nanowires enabled by the synergistic effect of acetate and lanthanide ion passivation. Chemical Engineering Journal, 2021, 426, 131310.	6.6	28
40	Ionic additive engineering for stable planar perovskite solar cells with efficiency >22%. Chemical Engineering Journal, 2021, 426, 130841.	6.6	33
41	Ni ²⁺ and Pr ³⁺ Co-doped CsPbCl ₃ perovskite quantum dots with efficient infrared emission at 1300 nm. Nanoscale, 2021, 13, 16598-16607.	2.8	13
42	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155
43	Enhanced oxygen evolution activity on mesoporous cobalt–iron oxides. Chemical Communications, 2021, 57, 11843-11846.	2.2	11
44	Optimizing the Performance of Perovskite Nanocrystal LEDs Utilizing Cobalt Doping on a ZnO Electron Transport Layer. Journal of Physical Chemistry Letters, 2021, 12, 10112-10119.	2.1	18
45	Post-treatment of CsPbI3 nanocrystals by p-iodo-D-Phenylalanine for efficient perovskite LEDs. Materials Today Physics, 2021, 21, 100555.	2.9	10
46	OD Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science, 2021, 8, e2102689.	5.6	142
47	Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 12663-12671.	2.4	11
48	Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells. Nano Energy, 2021, 90, 106610.	8.2	35
49	Introducing ytterbium acetate to luminescent CsPbCl ₃ nanocrystals for enhanced sensitivity of Cu ²⁺ detection. Inorganic Chemistry Frontiers, 2021, 9, 44-50.	3.0	8
50	Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High-Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 3631-3641.	4.0	36
51	Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy, 2020, 78, 105278.	8.2	73
52	Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Ion Migration. Journal of Physical Chemistry Letters, 2020, 11, 6168-6175.	2.1	11
53	Enhanced room-temperature NO ₂ sensing properties of biomorphic hierarchical mixed phase WO ₃ . Nanoscale, 2020, 12, 24285-24295.	2.8	19
54	Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells. Nanoscale, 2020, 12, 18621-18628.	2.8	14

#	Article	lF	CITATIONS
55	Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 2020, 5, 1574-1585.	4.1	30
56	High fluorescence LaOBr/coumarin organic–inorganic composite nanomaterials for ultra-sensitive Fe ³⁺ sensing, fluorescence imaging and water-based ink anti-counterfeiting applications. Journal of Materials Chemistry C, 2020, 8, 13733-13742.	2.7	8
57	High brightness blue light-emitting diodes based on CsPb(Cl/Br) ₃ perovskite QDs with phenethylammonium chloride passivation. Nanoscale, 2020, 12, 11728-11734.	2.8	42
58	Samarium-Doped Metal Halide Perovskite Nanocrystals for Single-Component Electroluminescent White Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2131-2139.	8.8	124
59	Cdâ€Rich Alloyed CsPb _{1â€} <i></i> Cd <i>_x</i> Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. Advanced Science, 2020, 7, 2000930.	5.6	52
60	Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals. Nano Energy, 2020, 76, 105103.	8.2	40
61	Bright Blue Light Emission of Ni ²⁺ Ion-Doped CsPbCl <i>_x</i> Br _{3–<i>x</i>} Perovskite Quantum Dots Enabling Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 14195-14202.	4.0	118
62	Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker. Journal of Colloid and Interface Science, 2020, 569, 358-365.	5.0	30
63	Novel Strategy for Designing Photochromic Ceramic: Reversible Upconversion Luminescence Modification and Optical Information Storage Application in the PbWO ₄ :Yb ³⁺ Er ³⁺ Photochromic Ceramic. ACS Applied Materials & amp; Interfaces, 2020, 12, 21936-21943.	4.0	63
64	Smart quantum dot LEDs with simulated solar spectrum for intelligent lighting. Nanotechnology, 2020, 31, 505207.	1.3	4
65	Understanding the noble metal modifying effect on In ₂ O ₃ nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases. Nanoscale Horizons, 2019, 4, 1361-1371.	4.1	69
66	Perovskite light-emitting diodes for uniform eight-segment displays. Applied Physics Letters, 2019, 115, .	1.5	4
67	Improved Interface Charge Extraction by Double Electron Transport Layers for Highâ€Efficient Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900314.	3.1	18
68	Ce6-C6-TPZ co-loaded albumin nanoparticles for synergistic combined PDT-chemotherapy of cancer. Journal of Materials Chemistry B, 2019, 7, 5797-5807.	2.9	21
69	Impact of Host Composition, Codoping, or Tridoping on Quantum-Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cell Applications. Nano Letters, 2019, 19, 6904-6913.	4.5	100
70	Effective blue-violet photoluminescence through lanthanum and fluorine ions co-doping for CsPbCl ₃ perovskite quantum dots. Nanoscale, 2019, 11, 2484-2491.	2.8	72
71	Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale, 2019, 11, 11496-11504.	2.8	71
72	Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection. Nano Energy, 2019, 61, 211-220.	8.2	71

#	Article	IF	CITATIONS
73	Spectrally Tunable Solid State Fluorescence and Roomâ€Temperature Phosphorescence of Carbon Dots Synthesized via Seeded Growth Method. Advanced Optical Materials, 2019, 7, 1801599.	3.6	122
74	Synthesis of tungsten disulfide quantum dots for high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 786, 764-769.	2.8	24
75	Zn-Alloyed CsPbI ₃ Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Letters, 2019, 19, 1552-1559.	4.5	395
76	CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy, 2019, 59, 517-526.	8.2	165
77	Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials, 2019, 201, 42-52.	5.7	67
78	Highly Efficient and Stable Inorganic Perovskite Quantum Dots by Embedding into a Polymer Matrix. ChemNanoMat, 2019, 5, 346-351.	1.5	38
79	Multicolor Lightâ€Emitting Diodes with MoS ₂ Quantum Dots. Particle and Particle Systems Characterization, 2019, 36, 1800362.	1.2	23
80	Efficient and Stable CsPb(Br/I) < sub > 3 < /sub > @ Anthracene Composites for White Light-Emitting Devices. ACS Applied Materials & amp; Interfaces, 2018, 10, 16768-16775.	4.0	74
81	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 3337-3342.	7.2	223
82	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 3395-3400.	1.6	37
83	Carbon dots with efficient solid-state red-light emission through the step-by-step surface modification towards light-emitting diodes. Dalton Transactions, 2018, 47, 3811-3818.	1.6	48
84	White light emission in Bi ³⁺ /Mn ²⁺ ion co-doped CsPbCl ₃ perovskite nanocrystals. Nanoscale, 2018, 10, 1023-1029.	2.8	132
85	Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices. Nanotechnology, 2018, 29, 085705.	1.3	77
86	Highly efficient and stable blue-emitting CsPbBr ₃ @SiO ₂ nanospheres through low temperature synthesis for nanoprinting and WLED. Nanotechnology, 2018, 29, 285706.	1.3	45
87	Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes. Nanotechnology, 2018, 29, 245702.	1.3	30
88	Photoluminescence enhancement of carbon dots induced by hybrids of photonic crystals and goldâ€"silver alloy nanoparticles. Journal of Materials Chemistry C, 2018, 6, 147-152.	2.7	22
89	Fineâ€Tuned Multilayered Transparent Electrode for Highly Transparent Perovskite Lightâ€Emitting Devices. Advanced Electronic Materials, 2018, 4, 1700285.	2.6	31
90	Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology, 2018, 29, 025706.	1.3	19

#	Article	IF	CITATIONS
91	Rational Control of Size and Photoluminescence of WS ₂ Quantum Dots for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 43824-43830.	4.0	33
92	Lowâ€Cost Oneâ€Pot Synthesis of WS ₂ Quantum Dots with Wide Emission Spectrum for Lightâ€Emitting Applications. ChemPlusChem, 2018, 83, 1052-1056.	1.3	14
93	Impurity lons Codoped Cesium Lead Halide Perovskite Nanocrystals with Bright White Light Emission toward Ultraviolet–White Light-Emitting Diode. ACS Applied Materials & 1, 10, 39040-39048.	4.0	78
94	Luminescence carbon dot-based nanofibers for a water-insoluble drug release system and their monitoring of drug release. Journal of Materials Chemistry B, 2018, 6, 3579-3585.	2.9	14
95	Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Mikrochimica Acta, 2018, 185, 397.	2.5	23
96	Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 4166-4173.	2.1	108
97	Facile synthesis of controllable TiO2 composite nanotubes via templating route: Highly sensitive detection of toluene by double driving from Pt@ZnO NPs. Sensors and Actuators B: Chemical, 2018, 273, 1676-1686.	4.0	29
98	APTES-functionalized thin-walled porous WO ₃ nanotubes for highly selective sensing of NO ₂ in a polluted environment. Journal of Materials Chemistry A, 2018, 6, 10976-10989.	5.2	100
99	Spontaneous Silver Doping and Surface Passivation of CsPbl ₃ Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Letters, 2018, 3, 1571-1577.	8.8	205
100	Amphiphilic Silane Modified Multifunctional Nanoparticles for Magnetically Targeted Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11451-11460.	4.0	29
101	High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites. Biomaterials, 2017, 138, 69-79.	5 . 7	32
102	Green fluorescent organic nanoparticles based on carbon dots and self-polymerized dopamine for cell imaging. RSC Advances, 2017, 7, 28987-28993.	1.7	19
103	Concentration- and temperature-dependent photoluminescence of CsPbBr3 perovskite quantum dots. Optik, 2017, 139, 56-60.	1.4	18
104	Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 11416-11420.	2.7	98
105	Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells. Advanced Materials, 2017, 29, 1704149.	11.1	389
106	Three-Dimensional Inverse Opal Photonic Crystal Substrates toward Efficient Capture of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30510-30518.	4.0	34
107	Synergistic Upconversion Enhancement Induced by Multiple Physical Effects and an Angle-Dependent Anticounterfeit Application. Chemistry of Materials, 2017, 29, 6799-6809.	3.2	81
108	A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017, 9, 13042-13051.	2.8	251

#	Article	IF	CITATIONS
109	Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Letters, 2017, 17, 8005-8011.	4.5	672
110	Amphiphilic silane modified multifunctional nanoparticles for ratiometric oxygen sensing. RSC Advances, 2017, 7, 34118-34124.	1.7	1
111	Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots. Applied Physics Letters, 2016, 109, .	1.5	65
112	Liquid-type AgInS2/ZnS quantum dot-based warm white light-emitting diodes. Chemical Physics Letters, 2016, 661, 228-233.	1.2	12
113	High efficient light-emitting diodes based on liquid-type carbon dots. RSC Advances, 2016, 6, 96798-96802.	1.7	15
114	White light-emitting diodes of high color rendering index with polymer dot phosphors. RSC Advances, 2016, 6, 106225-106229.	1.7	7
115	Large Upconversion Enhancement in the "Islands―Au–Ag Alloy/NaYF ₄ : Yb ³⁺ , Tm ³⁺ /Er ³⁺ Composite Films, and Fingerprint Identification. Advanced Functional Materials, 2015, 25, 5462-5471.	7.8	135
116	Analysis of the upconversion photoluminescence spectra as a probe of local microstructure in Y ₂ O ₃ /Eu ³⁺ nanotubes under high pressure. RSC Advances, 2015, 5, 3130-3134.	1.7	10
117	The pressure induced amorphization and behavior of octahedron in Y ₂ O ₃ /Eu ³⁺ nanotubes. Materials Research Express, 2014, 1, 025013.	0.8	5
118	Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs. Nature Communications, 2014, 5, 5702.	5.8	146
119	Yb ₂ O ₃ /Au Upconversion Nanocomposites with Broad-Band Excitation for Solar Cells. Journal of Physical Chemistry C, 2014, 118, 3258-3265.	1.5	46
120	Pressure-Induced Amorphization in Gd ₂ O ₃ /Er ³⁺ Nanorods. Journal of Physical Chemistry C, 2013, 117, 8503-8508.	1.5	18
121	Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents. Journal of Materials Chemistry B, 2013, 1, 919.	2.9	12
122	A strategy for calibrating the actual quantum efficiency of quantum cutting in YVO4:Bi3+(Nd3+), Yb3+. Journal of Applied Physics, 2013, 113, .	1.1	12
123	Communication: Excitation band modulation with high-order photonic band gap in PMMA:Eu(TTA)3(TPPO)2 opals. Journal of Chemical Physics, 2013, 138, 181103.	1.2	2
124	Remarkable fluorescence enhancement in YVO4:Eu3+@Ag nano-hybrids induced by interface effect. RSC Advances, 2012, 2, 2047.	1.7	23
125	Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+@SiO2 nanocomposites. Journal of Applied Physics, 2012, 111, .	1.1	34
126	The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO4:Yb3+, Er3+ NPs. Dalton Transactions, 2012, 41, 13525.	1.6	38

#	Article	IF	CITATIONS
127	Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4:Yb,Er nano-film. Nanoscale, 2012, 4, 6971.	2.8	59
128	Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals: switching from UV to NIR regions. Journal of Materials Chemistry, 2012, 22, 24698.	6.7	43
129	Non-photobleaching YAG:Ce nanoparticles for optical imaging with blue excitation. RSC Advances, 2012, 2, 3897.	1.7	23
130	One-Step Synthesis and Self-Assembly of Metal Oxide Nanoparticles into 3D Superlattices. ACS Nano, 2012, 6, 4382-4391.	7.3	48
131	Oneâ€Step Synthesis and Optical Properties of Benzoate―and Biphenolateâ€Capped ZrO ₂ Nanoparticles. Advanced Functional Materials, 2012, 22, 4275-4283.	7.8	42
132	Synthesis of novel core–shell structural AuNR@MCM-41 for infrared light-driven release of drug. Journal of Materials Research, 2011, 26, 2414-2419.	1.2	6
133	Modified spontaneous emissions of europium complex in weak PMMA opals. Physical Chemistry Chemical Physics, 2011, 13, 18023.	1.3	44
134	Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. Journal of Materials Chemistry, 2011, 21, 6193.	6.7	173
135	YVO4:Eu3+,Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells. Journal of Materials Chemistry, 2011, 21, 12331.	6.7	57
136	Downconversion from visible to near infrared through multi-wavelength excitation in Er3+/Yb3+ co-doped NaYF4 nanocrystals. Journal of Applied Physics, 2011, 110, .	1.1	29
137	Gd2O3:Eu3+@mesoporous SiO2 bifunctional core–shell composites: Fluorescence label and drug release. Materials Research Bulletin, 2011, 46, 2296-2303.	2.7	20
138	Silver nanotorus and nanoparticles on silica wafer: optical properties and investigation of PVA in the formation process. Journal of Materials Science: Materials in Electronics, 2011, 22, 64-71.	1.1	3
139	Influence of photonic stop band effect on photoluminescence of Y2O3:Eu3+ inverse opal films. Chemical Physics Letters, 2011, 509, 33-36.	1.2	7
140	Xâ€ray diffraction of cubic Gd ₂ O ₃ /Er under high pressure. Physica Status Solidi (B): Basic Research, 2011, 248, 1123-1127.	0.7	18
141	Influence of Concentration Effect and Au Coating on Photoluminescence Properties of YVO ₄ :Eu ³⁺ Nanoparticle Colloids. Journal of Physical Chemistry C, 2010, 114, 9975-9980.	1.5	42
142	High voltage preparation, characterization, and optical properties of silver dendrites in PVA matrix. Frontiers of Optoelectronics in China, 2010, 3, 205-210.	0.2	2
143	Solvothermal synthesis and luminescence properties of monodisperse Gd2O3:Eu3+ and Gd2O3:Eu3+@SiO2 nanospheres. Journal of Solid State Chemistry, 2010, 183, 2779-2785.	1.4	28
144	Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sensors and Actuators B: Chemical, 2010, 147, 531-538.	4.0	129

#	Article	IF	CITATIONS
145	Influence of the TGA Modification on Upconversion Luminescence of Hexagonal-Phase NaYF ₄ :Yb ³⁺ , Er ³⁺ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 8219-8226.	1.5	96
146	Porous In ₂ O ₃ :RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes: Electrospinning Preparation and Room Gas-Sensing Properties. Journal of Physical Chemistry C, 2010, 114, 9089-9095.	1.5	89
147	Preparation and Bifunctional Gas Sensing Properties of Porous In ₂ O ₃ â^'CeO ₂ Binary Oxide Nanotubes. Inorganic Chemistry, 2010, 49, 10590-10597.	1.9	100
148	Controllable Synthesis and Size-Dependent Luminescent Properties of YVO ₄ :Eu ³⁺ Nanospheres and Microspheres. Journal of Physical Chemistry C, 2010, 114, 14018-14024.	1.5	78
149	Modified optical properties in a samarium doped titania inverse opal. Optics Letters, 2010, 35, 1449.	1.7	8
150	Observation of Lamb shift and modified spontaneous emission dynamics in the YBO_3:Eu^3+ inverse opal. Optics Letters, 2010, 35, 2898.	1.7	21
151	Improved Upconversion Luminescence Properties of Gd ₂ O ₃ :Yb ³⁺ Core–Shell Nanorods. Journal of Nanoscience and Nanotechnology, 2009, 9, 2677-2681.	0.9	11
152	Three-Dimensionally Ordered Macroporous ZrO ₂ :Eu ³⁺ : Photonic Band Effect and Local Environments. Journal of Physical Chemistry C, 2009, 113, 5906-5911.	1.5	50
153	Polyol-Mediated Synthesis of Hexagonal LaF3 Nanoplates Using NaNO3 as a Mineralizer. Crystal Growth and Design, 2009, 9, 1750-1756.	1.4	36
154	Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles. Journal of Chemical Physics, 2009, 131, 054506.	1.2	40
155	Electrospinning Preparation and Photoluminescence Properties of Lanthanum Phosphate Nanowires and Nanotubes. Journal of Physical Chemistry C, 2009, 113, 9609-9615.	1.5	56
156	The luminescence properties of the ZnO@ZnWO4:Eu3+ core–shell composites. Journal of Luminescence, 2008, 128, 1205-1210.	1.5	8
157	Polyol-mediated syntheses and characterizations of NaYF4, NH4Y3F10 and YF3 nanocrystals/sub-microcrystals. Materials Research Bulletin, 2008, 43, 2130-2136.	2.7	15
158	Structure and Upconversion Luminescence of Hydrothermal PbWO ₄ :Er ³⁺ , Yb ³⁺ Powders. Journal of Physical Chemistry C, 2008, 112, 19694-19698.	1.5	59
159	Electrospinning Preparation, Structure, and Photoluminescence Properties of YBO ₃ :Eu ³⁺ Nanotubes and Nanowires. Chemistry of Materials, 2008, 20, 4762-4767.	3.2	98
160	Upconversion Properties of Ln ³⁺ Doped NaYF ₄ /Polymer Composite Fibers Prepared by Electrospinning. Journal of Physical Chemistry C, 2008, 112, 1435-1440.	1.5	89
161	Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Composite Fibers. Journal of Physical Chemistry C, 2008, 112, 9155-9162.	1.5	105
162	Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO ₂ : Er ³⁺ , Yb ³⁺ . Inorganic Chemistry, 2008, 47, 9654-9659.	1.9	37

#	Article	IF	CITATIONS
163	White Luminescence by Up-Conversion from Thin Film Made with Ln3+-Doped NaYF4 Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 1254-1257.	0.9	10
164	Preparation and Luminescent Properties of YVO4:Eu3+ Nanofibers by Electrospinning. Journal of Nanoscience and Nanotechnology, 2008, 8, 1432-1436.	0.9	21
165	Microstructure and optical properties of Eu3+ activated YV1â^'xPxO4 phosphors. Journal of Applied Physics, 2008, 104, 084910.	1.1	58
166	Simulation of Wyner-Ziv Video Coding Algorithm Based on Transform Domain., 2008, , .		0
167	White Luminescence by Up-Conversion from Thin Film Made with Ln3+-Doped NaYF4 Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 1254-1257.	0.9	6
168	Structure and Photoluminescent Properties of Microstructural YBO3 : Eu3+ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2007, 7, 593-601.	0.9	13
169	Surface defects and their influence on structural and photoluminescence properties of CdWO4:Eu3+nanocrystals. Journal of Applied Physics, 2007, 102, 054311.	1.1	38
170	Electrospinning Preparation and Photoluminescence Properties of Rare-Earth Complex/Polymer Composite Fibers. Journal of Physical Chemistry C, 2007, 111, 6524-6527.	1.5	77
171	Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Applied Physics Letters, 2007, 90, 103103.	1.5	61
172	Highly Luminescent YVO ₄ â^'Eu ³⁺ Nanocrystals Coating on Wirelike Y(OH) ₃ â^'Eu ³⁺ and Y ₂ O ₃ â^'Eu ³⁺ Microcrystals by Chemical Corrosion. Journal of Physical Chemistry C, 2007, 111, 12472-12477.	1.5	42
173	Photoluminescence Properties of ZnWO4:Eu3+Nanocrystals Prepared by a Hydrothermal Method. Journal of Physical Chemistry C, 2007, 111, 7586-7592.	1.5	96
174	Luminescent properties of YBO3:Eu3+ nanosheets and microstructural materials consisting of nanounits. Journal of Luminescence, 2007, 122-123, 882-885.	1.5	25
175	Preparation and luminescent properties of europium-doped yttria fibers by electrospinning. Journal of Luminescence, 2007, 124, 39-44.	1.5	81
176	Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders. Journal of Luminescence, 2007, 127, 371-376.	1.5	81
177	Size-Dependent Upconversion Luminescence in Er ³⁺ /Yb ³⁺ -Codoped Nanocrystalline Yttria:  Saturation and Thermal Effects. Journal of Physical Chemistry C, 2007, 111, 13611-13617.	1.5	310
178	Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO4:Eu3+/YBO3:Eu3+Composite. Chemistry of Materials, 2006, 18, 4526-4532.	3.2	79
179	Luminescent enhancement in europium-doped yttria nanotubes coated with yttria. Applied Physics Letters, 2006, 88, 143104.	1.5	53
180	Luminescent Properties of Pure Cubic Phase Y2O3/Eu3+Nanotubes/Nanowires Prepared by a Hydrothermal Method. Journal of Physical Chemistry B, 2005, 109, 15236-15242.	1.2	114

#	Article	IF	CITATIONS
181	Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3,Yb3+ nanowires. Journal of Chemical Physics, 2005, 123, 174710.	1.2	194
182	Three-order fluorescence enhancement of perovskite nanocrystals using plasmonic Ag@SiO2 nanocomposites. Journal of Materials Chemistry C, 0, , .	2.7	1
183	Promotion of Oxygen Evolution Activity of Co-Based Nanocomposites by Introducing Fe3+ Ions. Topics in Catalysis, 0, , 1.	1.3	1