Eddy J Moors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286613/publications.pdf

Version: 2024-02-01

94 papers 15,224 citations

50 h-index

93 g-index

100 all docs 100 docs citations

100 times ranked

13433 citing authors

#	Article	IF	Citations
1	Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107, 43-69.	1.9	1,579
2	Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.	13.7	1,438
3	Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
4	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	4.2	863
5	Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7, 269-278.	4.2	843
6	Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3227-3246.	1.8	751
7	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
8	Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.	1.9	509
9	Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71-77.	1.9	493
10	Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 2010, 3, 722-727.	5.4	491
11	Temporal and amongâ€site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 2009, 23, .	1.9	422
12	Land management and land-cover change haveÂimpacts of similar magnitude on surfaceÂtemperature. Nature Climate Change, 2014, 4, 389-393.	8.1	404
13	Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology, 2011, 17, 1167-1185.	4.2	374
14	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	3.3	265
15	Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sensing of Environment, 2012, 121, 323-334.	4.6	259
16	Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters, 2007, 34, .	1.5	223
17	Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems and Environment, 2010, 139, 302-315.	2.5	221
18	Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems and Environment, 2010, 139, 363-383.	2.5	194

#	Article	IF	Citations
19	Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 2008, 5, 433-450.	1.3	192
20	Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 2005, 80, 121-141.	1.3	173
21	Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agricultural and Forest Meteorology, 2008, 148, 1941-1953.	1.9	148
22	Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 75-95.	1.9	145
23	The carbon uptake of a mid latitude pine forest growing on sandy soil. Agricultural and Forest Meteorology, 2002, 111, 157-170.	1.9	144
24	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	2.2	137
25	Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2 O fluxes at six forest sites in Europe. Global Change Biology, 2002, 8, 213-230.	4.2	135
26	Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements. Rangeland Ecology and Management, 2010, 63, 16-39.	1,1	133
27	Rainfall interception and the coupled surface water and energy balance. Agricultural and Forest Meteorology, 2015, 214-215, 402-415.	1.9	130
28	Adaptation to changing water resources in the Ganges basin, northern India. Environmental Science and Policy, 2011, 14, 758-769.	2.4	122
29	On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agricultural and Forest Meteorology, 2012, 152, 212-222.	1.9	121
30	An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Science of the Total Environment, 2016, 548-549, 289-306.	3.9	121
31	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	3.5	111
32	Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agricultural and Forest Meteorology, 2006, 141, 35-56.	1.9	100
33	Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.	4.2	94
34	Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems. Agricultural and Forest Meteorology, 2013, 171-172, 46-56.	1.9	91
35	Variability of annual CO ₂ exchange from Dutch grasslands. Biogeosciences, 2007, 4, 803-816.	1.3	81
36	Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under nonâ€waterâ€stressed conditions. Global Change Biology, 2007, 13, 734-760.	4.2	81

#	Article	IF	Citations
37	Climate change and waterborne diarrhoea in northern India: Impacts and adaptation strategies. Science of the Total Environment, 2013, 468-469, S139-S151.	3.9	79
38	Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (<l>Larix cajanderii</l>) on permafrost. Biogeosciences, 2004, 1, 133-146.	1.3	78
39	Variability in carbon exchange of European croplands. Agriculture, Ecosystems and Environment, 2010, 139, 325-335.	2.5	71
40	Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biology, 2007, 13, 2110-2127.	4.2	69
41	Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology. Agriculture, Ecosystems and Environment, 2010, 139, 316-324.	2.5	66
42	Comparing observations and processâ€based simulations of biosphereâ€atmosphere exchanges on multiple timescales. Journal of Geophysical Research, 2010, 115, .	3.3	66
43	Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1941-1957.	1.3	65
44	Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology, 2011, 17, 3102-3114.	4.2	62
45	Toward a consistency crossâ€check of eddy covariance flux–based and biometric estimates of ecosystem carbon balance. Global Biogeochemical Cycles, 2009, 23, .	1.9	61
46	Pan-European delta 13C values of air and organic matter from forest ecosystems. Global Change Biology, 2005, 11, 1065-1093.	4.2	60
47	Increased heat fluxes near a forest edge. Theoretical and Applied Climatology, 2002, 72, 231-243.	1.3	58
48	Management effects on European cropland respiration. Agriculture, Ecosystems and Environment, 2010, 139, 346-362.	2.5	58
49	Obstacles to data access for research related to climate and water: Implications for science and EU policy-making. Environmental Science and Policy, 2012, 17, 41-48.	2.4	58
50	Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Science of the Total Environment, 2021, 768, 144467.	3.9	55
51	Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. Journal of Geophysical Research, 2008, 113, .	3.3	53
52	Estimating crop yield using a satellite-based light use efficiency model. Ecological Indicators, 2016, 60, 702-709.	2.6	52
53	Climate adaptation approaches and key policy characteristics: Cases from South Asia. Environmental Science and Policy, 2017, 78, 58-65.	2.4	50
54	EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest. Hydrology and Earth System Sciences, 2009, 13, 833-845.	1.9	48

#	Article	IF	Citations
55	What eddyâ€covariance measurements tell us about prior land flux errors in CO ₂ â€flux inversion schemes. Global Biogeochemical Cycles, 2012, 26, .	1.9	47
56	NOCTURNAL ACCUMULATION OF CO ₂ UNDERNEATH A TROPICAL FOREST CANOPY ALONG A TOPOGRAPHICAL GRADIENT. Ecological Applications, 2008, 18, 1406-1419.	1.8	46
57	Adjustment of measurement errors to reconcile precipitation distribution in the highâ€altitude Indus basin. International Journal of Climatology, 2018, 38, 3842-3860.	1.5	46
58	Assessing the uncertainty of estimated annual totals of net ecosystem productivity: A practical approach applied to a mid latitude temperate pine forest. Agricultural and Forest Meteorology, 2011, 151, 1823-1830.	1.9	43
59	Evaluating the performance of land surface model ORCHIDEE-CANÂv1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme. Geoscientific Model Development, 2016, 9, 2951-2972.	1.3	43
60	Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences, 2011, 8, 2009-2025.	1.3	42
61	Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. Journal of Hydrology, 2017, 553, 508-526.	2.3	41
62	Tipping points in adaptation to urban flooding under climate change and urban growth: The case of the Dhaka megacity. Land Use Policy, 2018, 79, 496-506.	2.5	38
63	Calibration of soil heat flux sensors. Agricultural and Forest Meteorology, 1998, 92, 1-8.	1.9	36
64	Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data. Journal of Geophysical Research, 2011, 116, .	3.3	35
65	Assessment of evaporative water loss from Dutch cities. Building and Environment, 2015, 83, 27-38.	3.0	33
66	Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.	1.3	30
67	Evaporation and surface conductance of three temperate forests in the Netherlands. Annales Des Sciences ForestiÃres, 1998, 55, 255-270.	1.1	30
68	Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?. Biogeosciences, 2014, 11, 2411-2427.	1.3	29
69	Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecology and Evolution, 2016, 6, 7352-7366.	0.8	29
70	Modelling evaporation from a drained and rewetted peatland. Journal of Hydrology, 1997, 199, 252-271.	2.3	24
71	Socioeconomics, Policy, or Climate Change: What is Driving Vulnerability in Southern Portugal?. Ecology and Society, 2011, 16, .	1.0	23
72	<scp>Spatioâ€temporal scp> evaluation of gridded precipitation products for the <scp>highâ€altitude Indus basin scp>. International Journal of Climatology, 2021, 41, 4283-4306.</scp></scp>	1.5	23

#	Article	lF	CITATIONS
73	Detecting the critical periods that underpin interannual fluctuations in the carbon balance of European forests. Journal of Geophysical Research, 2010, 115, .	3.3	22
74	A Model-Based Study of Carbon Fluxes at Ten European Forest Sites. Ecological Studies, 2003, , 151-177.	0.4	19
75	Modelling the effect of aggregates on N ₂ O emission from denitrification in an agricultural peat soil. Biogeosciences, 2011, 8, 2649-2663.	1.3	18
76	State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.	1.2	18
77	Integrated Adaptation Tipping Points (IATPs) for urban flood resilience. Environment and Urbanization, 2018, 30, 575-596.	1.5	18
78	Closing the Carbon Budget of a Scots Pine forest in the Netherlands. Climatic Change, 2004, 67, 309-328.	1.7	17
79	Exploring the Impact of Land Cover and Topography on Rainfall Maxima in the Netherlands. Journal of Hydrometeorology, 2013, 14, 524-542.	0.7	16
80	Changing monsoon patterns, snow and glacial melt, its impacts and adaptation options in northern India: Synthesis. Science of the Total Environment, 2013, 468-469, S162-S167.	3.9	14
81	Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity. Environmental Research Letters, 2014, 9, 065002.	2.2	13
82	From pea soup to water factories: wastewater paradigms in India and the Netherlands. Environmental Science and Policy, 2021, 115, 16-25.	2.4	12
83	Simulation of Daily Nitrous Oxide Emissions from Managed Peat Soils. Vadose Zone Journal, 2011, 10, 156-168.	1.3	11
84	The dendrochronological potential of Baikiaea plurijuga in Zambia. Dendrochronologia, 2017, 41, 65-77.	1.0	10
85	Trends in future N2O emissions due to land use change. Journal of Environmental Management, 2012, 94, 78-90.	3.8	7
86	Winter respiratory C losses provide explanatory power for net ecosystem productivity. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 243-260.	1.3	7
87	Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zambia. Acta Oecologica, 2018, 87, 45-57.	0.5	7
88	Changing monsoon patterns, snow and glacial melt, its impacts and adaptation options in northern India: Setting the stage. Science of the Total Environment, 2013, 468-469, S1-S3.	3.9	6
89	Correction to "Global patterns of landâ€atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observationsâ€. Journal of Geophysical Research, 2012, 117, .	3.3	5
90	The Spatial Variability of Turbulence above a Forest. Theoretical and Applied Climatology, 1999, 62, 43-50.	1.3	3

Eddy J Moors

#	Article	lF	CITATIONS
91	Modelling the response of net primary productivity of the Zambezi teak forests to climate change along a rainfall gradient in Zambia. Biogeosciences, 2019, 16, 3853-3867.	1.3	3
92	Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia. Data in Brief, 2018, 17, 1361-1373.	0.5	2
93	Assimilation of remote sensing data to monitor the terrestrial carbon cycle: the carbon observatory of geoland., 0,,.		0
94	Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Global Change Biology, 2007, .	4.2	0