Petr PÃ;ral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286460/publications.pdf

Version: 2024-02-01

1478505 1199594 14 176 6 12 citations h-index g-index papers 14 14 14 336 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Scientific Reports, 2019, 9, 10765.	3.3	69
2	pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. Journal of Controlled Release, 2021, 332, 529-538.	9.9	32
3	Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules, 2020, 21, 1437-1449.	5. 4	29
4	Thermoresponsive \hat{l}^2 -glucan-based polymers for bimodal immunoradiotherapy $\hat{a} \in \text{``Are they able to}$ promote the immune system?. Journal of Controlled Release, 2017, 268, 78-91.	9.9	12
5	The pharmacological activation of adenosine A1 and A3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice. Purinergic Signalling, 2013, 9, 207-214.	2.2	7
6	Stem Cell Defect in Ubiquitin-Green Fluorescent Protein Mice Facilitates Engraftment of Lymphoid-Primed Hematopoietic Stem Cells. Stem Cells, 2018, 36, 1237-1248.	3.2	7
7	Cell cycle and differentiation of Sca-1 ⁺ and Sca-1 ^{â^'} hematopoietic stem and progenitor cells. Cell Cycle, 2018, 17, 1979-1991.	2.6	6
8	ChelatingÂPolymers for Hereditary Hemochromatosis Treatment. Macromolecular Bioscience, 2020, 20, 2000254.	4.1	5
9	Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis. Frontiers in Cell and Developmental Biology, 2020, 8, 98.	3.7	3
10	Effects of endostatin production on oncogenicity and metastatic activity of HPV16-transformed mouse cells: Role of interleukin $1\hat{1}_{\pm}$. International Journal of Oncology, 2009, 35, 213-22.	3.3	2
11	Cell Cycle Analysis Using In Vivo Staining of DNA-Synthesizing Cells. Methods in Molecular Biology, 2019, 2150, 141-152.	0.9	2
12	Hematopoiesis Remains Permissive to Bone Marrow Transplantation After Expansion of Progenitors and Resumption of Blood Cell Production. Frontiers in Cell and Developmental Biology, 2021, 9, 660617.	3.7	2
13	Regeneration kinetics of hematopoietic stem cells in wild-type and P53-deficient mice after sublethal cyclophosphamide treatment. Experimental Hematology, 2015, 43, S94.	0.4	0
14	Lin-Sca-1+c-KitlowCD48+CD71+ Cells Are the Engine of Bone Marrow Regeneration. Blood, 2014, 124, 5112-5112.	1.4	0