
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8286354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 2014, 57, 14-25.	5.2	626
2	Mixing layer height and its implications for air pollution over Beijing, China. Atmospheric Chemistry and Physics, 2016, 16, 2459-2475.	4.9	335
3	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
4	The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. Atmospheric Environment, 2014, 92, 546-556.	4.1	212
5	Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study. Environmental Science and Pollution Research, 2015, 22, 627-642.	5.3	180
6	Chemical characterization and source identification of PM _{2.5} at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 2017, 17, 12941-12962.	4.9	178
7	Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmospheric Research, 2015, 157, 37-48.	4.1	168
8	Aerosol optical depth (AOD) and Ãngström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. Journal of Geophysical Research, 2007, 112, .	3.3	166
9	Analysis of heavy pollution episodes in selected cities of northern China. Atmospheric Environment, 2012, 50, 338-348.	4.1	152
10	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	4.9	144
11	The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Environmental Science and Pollution Research, 2013, 20, 6433-6444.	5.3	120
12	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bulletin of the American Meteorological Society, 2015, 96, 1137-1155.	3.3	115
13	Trends in particulate matter and its chemical compositions in China from 2013–2017. Science China Earth Sciences, 2019, 62, 1857-1871.	5.2	111
14	Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmospheric Environment, 2013, 77, 250-259.	4.1	106
15	Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmospheric Environment, 2016, 125, 293-306.	4.1	104
16	The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 2014, 138, 179-188.	4.1	97
17	The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 2014, 1-14.	1.6	91
18	Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy. Atmospheric Environment, 2016, 141, 197-202.	4.1	90

#	Article	IF	CITATIONS
19	Seasonal variations in aerosol optical properties over China. Journal of Geophysical Research, 2011, 116, .	3.3	87
20	Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement. Atmospheric Chemistry and Physics, 2019, 19, 8569-8590.	4.9	81
21	Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment, 2012, 50, 278-286.	4.1	78
22	Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei. Atmospheric Chemistry and Physics, 2018, 18, 4897-4910.	4.9	78
23	Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 2018, 203, 105-117.	4.1	77
24	Modelling study of boundary-layer ozone over northern China - Part I: Ozone budget in summer. Atmospheric Research, 2017, 187, 128-137.	4.1	76
25	The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environment International, 2019, 126, 171-183.	10.0	73
26	Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 2020, 134, 105283.	10.0	73
27	Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Science Bulletin, 2010, 55, 1937-1944.	1.7	70
28	Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmospheric Environment, 2019, 213, 159-169.	4.1	70
29	Nitrate-dominated PM _{2.5} and elevation of particle pH observed in urban Beijing during the winter of 2017. Atmospheric Chemistry and Physics, 2020, 20, 5019-5033.	4.9	70
30	Regional pollution and its formation mechanism over North China Plain: A case study with ceilometer observations and model simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,574.	3.3	69
31	In situ measurements of SO2, NOx, NOy, and O3 in Beijing, China during August 2008. Science of the Total Environment, 2011, 409, 933-940.	8.0	65
32	The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China. Atmospheric Research, 2015, 157, 153-163.	4.1	63
33	Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Journal of Environmental Sciences, 2020, 92, 187-199.	6.1	63
34	Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival. Science of the Total Environment, 2018, 628-629, 430-440.	8.0	62
35	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	4.9	61
36	Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmospheric Environment, 2011, 45, 6317-6325.	4.1	56

#	Article	IF	CITATIONS
37	Characterization of black carbon in an urban-rural fringe area of Beijing. Environmental Pollution, 2017, 223, 524-534.	7.5	54
38	Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE. Atmospheric Environment, 2007, 41, 7138-7149.	4.1	52
39	Different HONO Sources for Three Layers at the Urban Area of Beijing. Environmental Science & Technology, 2020, 54, 12870-12880.	10.0	52
40	Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain. Journal of Environmental Sciences, 2019, 83, 152-160.	6.1	50
41	Atmospheric levels, variations, sources and health risk of PM2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain. Science of the Total Environment, 2019, 655, 581-590.	8.0	50
42	Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas. Environmental Pollution, 2018, 243, 1740-1749.	7.5	49
43	Reductions of PM2.5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Advances in Atmospheric Sciences, 2012, 29, 1330-1342.	4.3	48
44	Two-year continuous measurements of carbonaceous aerosols in urban Beijing, China: Temporal variations, characteristics and source analyses. Chemosphere, 2018, 200, 191-200.	8.2	48
45	The observationâ€based relationships between PM _{2.5} and AOD over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,701.	3.3	47
46	Assessment and comparison of three years of Terra and Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrial regions. Atmospheric Research, 2010, 97, 229-240.	4.1	46
47	Spatial oscillation of the particle pollution in eastern China during winter: Implications for regional air quality and climate. Atmospheric Environment, 2016, 144, 100-110.	4.1	46
48	Effect of the "coal to gas―project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmospheric Research, 2020, 241, 104977.	4.1	46
49	Quantification of the impact of aerosol on broadband solar radiation in North China. Scientific Reports, 2017, 7, 44851.	3.3	45
50	Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environmental Pollution, 2018, 236, 907-915.	7.5	43
51	Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations. Atmospheric Chemistry and Physics, 2016, 16, 10489-10500.	4.9	42
52	Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in "APEC Blue― Atmospheric Environment, 2017, 167, 476-486.	4.1	40
53	What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?. Atmospheric Chemistry and Physics, 2020, 20, 10831-10844.	4.9	38
54	Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 2019, 19, 5881-5888.	4.9	37

#	Article	IF	CITATIONS
55	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	4.9	36
56	Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes. Atmospheric Chemistry and Physics, 2020, 20, 4575-4592.	4.9	31
57	Validation of MODIS aerosol products by CSHNET over China. Science Bulletin, 2007, 52, 1708-1718.	1.7	30
58	Thermal internal boundary layer and its effects on air pollutants during summer in a coastal city in North China. Journal of Environmental Sciences, 2018, 70, 37-44.	6.1	29
59	Pollution characteristics and potential sources of nitrous acid (HONO) in early autumn 2018 of Beijing. Science of the Total Environment, 2020, 735, 139317.	8.0	27
60	Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Science of the Total Environment, 2020, 710, 136304.	8.0	26
61	Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768, 144538.	8.0	26
62	Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products. Atmospheric Chemistry and Physics, 2020, 20, 10687-10705.	4.9	26
63	Long-Term (2005–2017) View of Atmospheric Pollutants in Central China Using Multiple Satellite Observations. Remote Sensing, 2020, 12, 1041.	4.0	25
64	Influence of anthropogenic emission inventories on simulations of air quality in China during winter and summer 2010. Atmospheric Environment, 2019, 198, 236-256.	4.1	24
65	The Variations and Trends of MODIS C5 & C6 Products' Errors in the Recent Decade over the Background and Urban Areas of North China. Remote Sensing, 2016, 8, 754.	4.0	21
66	Typical polar organic aerosol tracers in PM2.5 over the North China Plain: Spatial distribution, seasonal variations, contribution and sources. Chemosphere, 2018, 209, 758-766.	8.2	20
67	PM2.5 Characteristics and Regional Transport Contribution in Five Cities in Southern North China Plain, During 2013–2015. Atmosphere, 2018, 9, 157.	2.3	20
68	Different roles of nitrate and sulfate in air pollution episodes in the North China Plain. Atmospheric Environment, 2020, 224, 117325.	4.1	20
69	Significant contribution of spring northwest transport to volatile organic compounds in Beijing. Journal of Environmental Sciences, 2021, 104, 169-181.	6.1	20
70	Chemical composition, water content and size distribution of aerosols during different development stages of regional haze episodes over the North China Plain. Atmospheric Environment, 2021, 245, 118020.	4.1	19
71	Composition and sources of brown carbon aerosols in megacity Beijing during the winter of 2016. Atmospheric Research, 2021, 262, 105773.	4.1	19
72	The aerosol direct radiative forcing over the Beijing metropolitan area from 2004 to 2011. Journal of Aerosol Science, 2014, 69, 62-70.	3.8	18

#	Article	IF	CITATIONS
73	Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain. Science of the Total Environment, 2020, 705, 135803.	8.0	18
74	Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017. Atmospheric and Oceanic Science Letters, 2020, 13, 240-247.	1.3	18
75	Tracking prevailing dust aerosol over the air pollution in central China with integrated satellite and ground observations. Atmospheric Environment, 2021, 253, 118369.	4.1	18
76	Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Science of the Total Environment, 2022, 819, 152778.	8.0	17
77	Model analysis of aerosol optical depth distributions over East Asia. Science China Earth Sciences, 2010, 53, 1079-1090.	5.2	15
78	The impact of relative humidity on the size distribution and chemical processes of major water-soluble inorganic ions in the megacity of Chongqing, China. Atmospheric Research, 2017, 192, 19-29.	4.1	15
79	Validation of MODIS C6 AOD products retrieved by the Dark Target method in the Beijing–Tianjin–Hebei urban agglomeration, China. Advances in Atmospheric Sciences, 2017, 34, 993-1002.	4.3	15
80	Secondary organic aerosols in Jinan, an urban site in North China: Significant anthropogenic contributions to heavy pollution. Journal of Environmental Sciences, 2019, 80, 107-115.	6.1	15
81	Modelling study of boundary-layer ozone over northern China - Part II: Responses to emission reductions during the Beijing Olympics. Atmospheric Research, 2017, 193, 83-93.	4.1	14
82	Molecular composition of organic aerosol over an agricultural site in North China Plain: Contribution of biogenic sources to PM2.5. Atmospheric Environment, 2017, 164, 448-457.	4.1	14
83	Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2+26 cities in northern China. Environmental Research, 2022, 211, 113055.	7.5	14
84	A new approach of the normalization relationship between PM2.5 and visibility and the theoretical threshold, a case in north China. Atmospheric Research, 2020, 245, 105054.	4.1	13
85	Variation characteristics of air combined pollution in Beijing City. Atmospheric Research, 2022, 274, 106197.	4.1	13
86	Characterization of dust activation and their prevailing transport over East Asia based on multi-satellite observations. Atmospheric Research, 2022, 265, 105886.	4.1	12
87	Overview of the performance of satellite fire products in China: Uncertainties and challenges. Atmospheric Environment, 2022, 268, 118838.	4.1	12
88	The impact of the aerosol reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via influencing photolysis rates. Science of the Total Environment, 2022, 821, 153197.	8.0	12
89	Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research, 2019, 225, 81-87.	4.1	10
90	The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 6111-6128.	4.9	10

#	Article	IF	CITATIONS
91	Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmospheric Chemistry and Physics, 2021, 21, 12173-12187.	4.9	10
92	Sources of ambient non-methane hydrocarbon compounds and their impacts on O3 formation during autumn, Beijing. Journal of Environmental Sciences, 2022, 114, 85-97.	6.1	10
93	Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008. Theoretical and Applied Climatology, 2016, 124, 103-118.	2.8	9
94	Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China. Environmental Pollution, 2020, 266, 115014.	7.5	9
95	Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 2021, 791, 148226.	8.0	9
96	Light absorption properties of black and brown carbon in winter over the North China Plain: Impacts of regional biomass burning. Atmospheric Environment, 2022, 278, 119100.	4.1	9
97	The Levels and Sources of Nitrous Acid (HONO) in Winter of Beijing and Sanmenxia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
98	Potential source regions of air pollutants at a regional background station in Northern China. Environmental Technology (United Kingdom), 2019, 40, 3412-3421.	2.2	8
99	A critical view of long-term AVHRR aerosol data record in China: Retrieval frequency and heavy pollution. Atmospheric Environment, 2020, 223, 117246.	4.1	8
100	The dynamic multi-box algorithm of atmospheric environmental capacity. Science of the Total Environment, 2022, 806, 150951.	8.0	8
101	The spatial-temporal distribution characteristics of atmospheric chloromethane according to data from the CARE-China network. Atmospheric Environment, 2021, 260, 118484.	4.1	7
102	Uncertainties of Simulated Aerosol Direct Radiative Effect Induced by Aerosol Chemical Components: A Measurementâ€Based Perspective From Urbanâ€Forest Transition Region in East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033688.	3.3	6
103	An unusual high ozone event over the North and Northeast China during the record-breaking summer in 2018. Journal of Environmental Sciences, 2021, 104, 264-276.	6.1	6
104	Vertical evolution of black and brown carbon during pollution events over North China Plain. Science of the Total Environment, 2022, 806, 150950.	8.0	6
105	Effect of Different Combustion Processes on Atmospheric Nitrous Acid Formation Mechanisms: A Winter Comparative Observation in Urban, Suburban and Rural Areas of the North China Plain. Environmental Science & Technology, 2022, 56, 4828-4837.	10.0	6
106	Using synoptic classification and trajectory analysis to assess air quality during the winter heating period in Ürümqi, China. Advances in Atmospheric Sciences, 2012, 29, 307-319.	4.3	5
107	Application Potential of Satellite Thermal Anomaly Products in Updating Industrial Emission Inventory of China. Geophysical Research Letters, 2021, 48, e2021GL092997.	4.0	5
108	Real-time physiochemistry of urban aerosols during a regional haze episode by a single-particle aerosol mass spectrometer: Mixing state, size distribution and source apportionment. Atmospheric Pollution Research, 2020, 11, 1329-1338.	3.8	5

#	Article	IF	CITATIONS
109	Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmospheric Environment, 2021, 258, 118483.	4.1	4
110	Contrasting effects of emission control on air pollution in Central China during the 2019 Military World Games based on satellite and ground observations. Atmospheric Research, 2021, 259, 105657.	4.1	4
111	Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China. Environmental Pollution, 2021, 289, 117679.	7.5	4
112	Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport. Environmental Pollution, 2022, 298, 118827.	7.5	4
113	The environmental benefit of Beijing-Tianjin-Hebei coal banning area for North China. Journal of Environmental Management, 2022, 311, 114870.	7.8	4
114	Air quality assessment and Gray model prediction for the 2022 Winter Olympics in Zhangjiakou, China. Air Quality, Atmosphere and Health, 2022, 15, 1303-1315.	3.3	2
115	Predicting Air Pollution in East Asia. , 2017, , 387-403.		1
116	Chemical Composition During Severe Haze Events in Northern China. , 2017, , 245-264.		0