Miguel Angel Manso-Callejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285927/publications.pdf

Version: 2024-02-01

43 papers 489 citations

11 h-index 713466 21 g-index

44 all docs

44 docs citations

times ranked

44

585 citing authors

#	Article	IF	CITATIONS
1	Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Solar Energy, 2016, 134, 119-131.	6.1	108
2	A Blockchain-Based Authorization System for Trustworthy Resource Monitoring and Trading in Smart Communities. Sensors, 2018, 18, 3561.	3.8	60
3	A Survey of Modelling Trends in Temporal GIS. ACM Computing Surveys, 2019, 51, 1-41.	23.0	26
4	Metadata behind the Interoperability of Wireless Sensor Networks. Sensors, 2009, 9, 3635-3651.	3.8	25
5	Volunteered Geographic Information System Design: Project and Participation Guidelines. ISPRS International Journal of Geo-Information, 2016, 5, 108.	2.9	21
6	GIS Design: A Review of Current Issues in Interoperability. Geography Compass, 2009, 3, 1105-1124.	2.7	17
7	A Deep Learning-Based Solution for Large-Scale Extraction of the Secondary Road Network from High-Resolution Aerial Orthoimagery. Applied Sciences (Switzerland), 2020, 10, 7272.	2.5	17
8	A Framework Based on Nesting of Convolutional Neural Networks to Classify Secondary Roads in High Resolution Aerial Orthoimages. Remote Sensing, 2020, 12, 765.	4.0	17
9	Spatial Estimation of Sub-Hour Global Horizontal Irradiance Based on Official Observations and Remote Sensors. Sensors, 2014, 14, 6758-6787.	3.8	14
10	Needs, drivers, participants and engagement actions: a framework for motivating contributions to volunteered geographic information systems. Journal of Geographical Systems, 2019, 21, 5-41.	3.1	14
11	Generative Learning for Postprocessing Semantic Segmentation Predictions: A Lightweight Conditional Generative Adversarial Network Based on Pix2pix to Improve the Extraction of Road Surface Areas. Land, 2021, 10, 79.	2.9	14
12	Towards an Integrated Model of Interoperability for Spatial Data Infrastructures. Transactions in GIS, 2009, 13, 43-67.	2.3	13
13	Zone design of specific sizes using adaptive additively weighted Voronoi diagrams. International Journal of Geographical Information Science, 2012, 26, 1811-1829.	4.8	12
14	A mobility constraint model to infer sensor behaviour in forest fire risk monitoring. Computers, Environment and Urban Systems, 2012, 36, 81-95.	7.1	12
15	Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates. Energies, 2022, 15, 4341.	3.1	11
16	<i><scp>T</scp>ime</i> <scp>B</scp> liography: A Dynamic and Online <scp>B</scp> ibliography on Temporal <scp>GIS</scp> . Transactions in GIS, 2014, 18, 799-816.	2.3	10
17	Using the Spatial Knowledge of Map Users to Personalize City Maps: A Case Study with Tourists in Madrid, Spain. ISPRS International Journal of Geo-Information, 2018, 7, 332.	2.9	10
18	Improving Road Surface Area Extraction via Semantic Segmentation with Conditional Generative Learning for Deep Inpainting Operations. ISPRS International Journal of Geo-Information, 2022, 11, 43.	2.9	10

#	Article	IF	CITATIONS
19	Optimizing the Recognition and Feature Extraction of Wind Turbines through Hybrid Semantic Segmentation Architectures. Remote Sensing, 2020, 12, 3743.	4.0	9
20	Indoor Occupancy Prediction using an IoT Platform. , 2019, , .		8
21	A Mobile Crowdsourcing Platform for Urban Infrastructure Maintenance., 2014,,.		7
22	A Methodological Approach to Using Geodesign in Transmission Line Projects. Sustainability, 2018, 10, 2757.	3.2	7
23	First Dataset of Wind Turbine Data Created at National Level With Deep Learning Techniques From Aerial Orthophotographs With a Spatial Resolution of 0.5 M/Pixel. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7968-7980.	4.9	7
24	Grammar Guided Genetic Programming for Network Architecture Search and Road Detection on Aerial Orthophotography. Applied Sciences (Switzerland), 2020, 10, 3953.	2.5	5
25	The Design of an Automated Workflow for Metadata Generation. Communications in Computer and Information Science, 2010, , 275-287.	0.5	5
26	Semi-automatic metadata extraction from imagery and cartographic data., 2007,,.		4
27	Assessment of the availability of near-real time open weather data provided by networks of surface stations in Spain. Earth Science Informatics, 2013, 6, 145-163.	3.2	4
28	Point- and curve-based geometric conflation. International Journal of Geographical Information Science, 2013, 27, 192-207.	4.8	4
29	Volunteered geographic information systems: Technological design patterns. Transactions in GIS, 2019, 23, 976-1007.	2.3	4
30	A Deep Convolutional Neural Network to Detect the Existence of Geospatial Elements in High-Resolution Aerial Imagery. Proceedings (mdpi), 2019, 19 , .	0.2	3
31	Using Bivariate Gaussian Distribution Confidence Ellipses of Lightning Flashes for Efficiently Computing Reliable Large Area Density Maps. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4489-4499.	6.3	2
32	Designing a Volunteered Geographic Information System for Road Data Validation. Proceedings (mdpi), 2019, 19, .	0.2	2
33	Dataset containing orthoimages tagged with road information covering approximately 8650Âkm2 of the Spanish territory (SROADEX). Data in Brief, 2022, 42, 108316.	1.0	2
34	Using 3D GeoDesign for Planning of New Electricity Networks in Spain. Lecture Notes in Computer Science, 2012, , 462-476.	1.3	1
35	Methodological Approach to Incorporate the Involve of Stakeholders in the Geodesign Workflow of Transmission Line Projects. ISPRS International Journal of Geo-Information, 2020, 9, 178.	2.9	1
36	Integration of Temporal and Semantic Components into the Geographic Information through Mark-up Languages. Part I: Definition. Lecture Notes in Computer Science, 2011, , 394-409.	1.3	1

#	Article	IF	CITATIONS
37	Evaluation of Transfer Learning Techniques with Convolutional Neural Networks (CNNs) to Detect the Existence of Roads in High-Resolution Aerial Imagery. Communications in Computer and Information Science, 2019, , 185-198.	0.5	1
38	Lifecycle of Geospatial Data in a High-Voltage Electrical Infrastructure Project: Geodesign Framework in the Electrical Network of Spain (REE). Proceedings (mdpi), 2019, 19, .	0.2	0
39	Prophet model for forecasting occupancy presence in indoor spaces using non-intrusive sensors. AGILE: GIScience Series, 0, 2, 1-13.	0.0	0
40	Automatic Metadata Generation for Geospatial Resource Discovery., 2012,, 78-110.		0
41	Automatic Metadata Generation for Geospatial Resource Discovery. , 2013, , 2176-2207.		O
42	Modelizaci \tilde{A}^3 n y predicci \tilde{A}^3 n espacio-tiempo de la irradiancia solar global a corto plazo mediante redes neuronales artificiales y geoestad \tilde{A} stica. Revista Cartogr \tilde{A}_i fica, 2020, , 13-40.	0.2	0
43	Modelización y predicción espacio-tiempo de la irradiancia solar global a corto plazo mediante redes neuronales artificiales y geoestadÃstica. Revista Cartográfica, 2020, , 13-40.	0.2	0