Richard S Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285829/publications.pdf

Version: 2024-02-01

126 papers 2,826 citations

28 h-index 189892 50 g-index

126 all docs

126 docs citations

126 times ranked

986 citing authors

#	Article	IF	CITATIONS
1	Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. Geophysics, 1997, 62, 807-813.	2.6	391
2	Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 2007, 26, 1502-1505.	0.7	263
3	Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 2008, 73, L1-L10.	2.6	218
4	iSPI TM â€" the improved source parameter imaging method. Geophysical Prospecting, 1998, 46, 141-151.	1.9	124
5	Conductivityâ€depth imaging of airborne electromagnetic stepâ€response data. Geophysics, 1991, 56, 102-114.	2.6	104
6	A comparison of data from airborne, semiâ€airborne, and ground electromagnetic systems. Geophysics, 2001, 66, 1379-1385.	2.6	82
7	Interpretation of magnetic data using an enhanced local wavenumber (ELW) method. Geophysics, 2005, 70, L7-L12.	2.6	76
8	A multimodel method for depth estimation from magnetic data. Geophysics, 2002, 67, 555-561.	2.6	61
9	Electromagnetic Induction Methods in Mining Geophysics from 2008 to 2012. Surveys in Geophysics, 2014, 35, 123-156.	4.6	61
10	Estimating depth and model type using the continuous wavelet transform of magnetic data. Geophysics, 2004, 69, 191-199.	2.6	60
11	A special circumstance of airborne inducedâ€polarization measurements. Geophysics, 1996, 61, 66-73.	2.6	57
12	Using an induction coil sensor to indirectly measure the B-field response in the bandwidth of the transient electromagnetic method. Geophysics, 2000, 65, 1489-1494.	2.6	55
13	Depth and structural index from normalized local wavenumber of 2D magnetic anomalies. Geophysical Prospecting, 2005, 53, 83-89.	1.9	55
14	Metalliferous mining geophysics â€" State of the art after a decade in the new millennium. Geophysics, 2011, 76, W31-W50.	2.6	52
15	Inductive interaction between polarizable conductors: An explanation of a negative coincidentâ€loop transient electromagnetic response. Geophysics, 1988, 53, 677-690.	2.6	45
16	An automatic technique for presentation of coincidentâ€loop, impulseâ€response, transient, electromagnetic data. Geophysics, 1994, 59, 1542-1550.	2.6	41
17	The use of B-field measurements in an airborne time-domain system: Part I. Benefits of B-field versus <i>dB/dt</i> data. Exploration Geophysics, 1998, 29, 24-29.	1.1	41
18	Imaging depth, structure, and susceptibility from magnetic data: The advanced source-parameter imaging method. Geophysics, 2005, 70, L31-L38.	2.6	41

#	Article	IF	CITATIONS
19	Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada. Ore Geology Reviews, 2021, 130, 103968.	2.7	37
20	Resistiveâ€limit, timeâ€domain AEM apparent conductivity. Geophysics, 1996, 61, 93-99.	2.6	36
21	The usefulness of multicomponent, timeâ€domain airborne electromagnetic measurements. Geophysics, 1996, 61, 74-81.	2.6	36
22	On removing the primary field from fixed-wing time-domain airborne electromagnetic data: some consequences for quantitative modelling, estimating bird position and detecting perfect conductors. Geophysical Prospecting, 2001, 49, 405-416.	1.9	36
23	The moments of the impulse response: A new paradigm for the interpretation of transient electromagnetic data. Geophysics, 2002, 67, 1095-1103.	2.6	32
24	Application of Occam's inversion to airborne time-domain electromagnetics. The Leading Edge, 2009, 28, 284-287.	0.7	31
25	The Impulse-Response Moments of a Conductive Sphere in a Uniform Field, a Versatile and Efficient Electromagnetic Model. Exploration Geophysics, 2001, 32, 113-118.	1.1	30
26	Inversion of airborne timeâ€domain electromagnetic data to a 1D structure using lateral constraints. Near Surface Geophysics, 2009, 7, 63-71.	1,2	30
27	Field examples of negative coincidentâ€loop transient electromagnetic responses modeled with polarizable halfâ€planes. Geophysics, 1989, 54, 1491-1498.	2.6	28
28	Sferics noise reduction in time-domain electromagnetic systems: application to MegaTEM ^{II} signal enhancement. Exploration Geophysics, 2010, 41, 225-239.	1.1	28
29	Application of a modified GEOTEM® system to reconnaissance exploration for kimberlites in the Point Lake area, NWT, Canada. Geophysics, 1996, 61, 82-92.	2.6	25
30	Interpolation and gridding of aliased geophysical data using constrained anisotropic diffusion to enhance trends. Geophysics, 2005, 70, V121-V127.	2.6	25
31	Gridding aeromagnetic data using longitudinal and transverse horizontal gradients with the minimum curvature operator. The Leading Edge, 2005, 24, 142-145.	0.7	25
32	Tracking the Transmitting-Receiving Offset in Fixed-Wing Transient EM Systems: Methodology and Application. Exploration Geophysics, 2001, 32, 14-19.	1.1	22
33	Using airborne electromagnetics surveys to investigate the hydrogeology of an area near Nyborg, Denmark. Near Surface Geophysics, 2004, 2, 123-130.	1.2	21
34	On Archean craton growth and stabilisation: Insights from lithospheric resistivity structure of the Superior Province. Earth and Planetary Science Letters, 2021, 562, 116853.	4.4	21
35	The realizable resistive limit: A new concept for mapping geological features spanning a broad range of conductances. Geophysics, 2000, 65, 1124-1127.	2.6	20
36	Robust estimation of the bandâ€limited inductiveâ€limit response from impulseâ€response TEM measurements taken during the transmitter switchâ€off and the transmitter offâ€time: Theory and an example from Voisey's Bay, Labrador, Canada. Geophysics, 2000, 65, 476-481.	2.6	19

#	Article	IF	Citations
37	An Explanation of Abnormal TEM Responses: Coincident-Loop Negatives, and the Loop Effect. Exploration Geophysics, 1988, 19, 435-446.	1.1	18
38	Case history of combined airborne time-domain electromagnetics and power-line field survey in Chibougamau, Canada. Geophysics, 2010, 75, B67-B72.	2.6	17
39	Supervised classification of down-hole physical properties measurements using neural network to predict the lithology. Journal of Applied Geophysics, 2016, 124, 17-26.	2.1	17
40	An enhanced method for source parameter imaging of magnetic data collected for mineral exploration. Geophysical Prospecting, 2005, 53, 655-665.	1.9	16
41	Case histories illustrating the characteristics of the HeliGEOTEM system. Exploration Geophysics, 2009, 40, 246-256.	1.1	16
42	Crustal-Scale Geology and Fault Geometry Along the Gold-Endowed Matheson Transect of the Abitibi Greenstone Belt. Economic Geology, 2021, 116, 1053-1072.	3.8	16
43	Sensitivity cross-sections in airborne electromagnetic methods using discrete conductors. Exploration Geophysics, 2012, 43, 95-103.	1.1	15
44	Geophysical Case Study of the Iso and New Insco Deposits, Quebec, Canada, Part I: Data Comparison and Analysis. Exploration and Mining Geology, 2006, 15, 53-63.	0.5	14
45	A discrete conductor transformation of airborne electromagnetic data. Near Surface Geophysics, 2007, 5, 87-95.	1.2	13
46	Approximate apparent conductance (or conductivity) from the realizable moments of the impulse response. Geophysics, 2005, 70, G29-G32.	2.6	12
47	Magmatic, hydrothermal and ore element transfer processes of the southeastern Archean Superior Province implied from electrical resistivity structure. Gondwana Research, 2022, 105, 84-95.	6.0	12
48	Electromagnetic induction in an inhomogeneous conductive thin sheet. Geophysics, 1987, 52, 1677-1688.	2.6	11
49	Using the moments of a thick layer to map conductance and conductivity from airborne electromagnetic data. Journal of Applied Geophysics, 2002, 49, 173-183.	2.1	11
50	Geophysical Case Study of the Iso and New Insco Deposits, Quebec, Canada, Part II: Modeling and Interpretation. Exploration and Mining Geology, 2006, 15, 65-74.	0.5	11
51	Using reversed polarity airborne transient electromagnetic data to map tailings around mine sites. The Leading Edge, 2008, 27, 1470-1478.	0.7	11
52	A comparison of airborne electromagnetic data with ground resistivity data over the Midwest deposit in the Athabasca basin. Near Surface Geophysics, 2011, 9, 319-330.	1.2	11
53	Structural complexity inferred from anisotropic resistivity: Example from airborne EM and compilation of historical resistivity/induced polarization data from the gold-rich Canadian Malartic district, Québec, Canada. Geophysics, 2019, 84, B153-B167.	2.6	11
54	Combining airborne electromagnetic data from alternating flight directions to form a virtual symmetric array. Geophysics, 2006, 71, G35-G41.	2.6	10

#	Article	IF	CITATIONS
55	Source location using total-field homogeneity: Introducing the SLUTH method for depth estimation. The Leading Edge, 2007, 26, 1272-1277.	0.7	10
56	Using constrained inversion of gravity and magnetic field to produce a 3D lithoâ€prediction model. Geophysical Prospecting, 2017, 65, 1662-1679.	1.9	10
57	A new method for interpolating linear features in aeromagnetic data. Geophysics, 2019, 84, JM15-JM24.	2.6	10
58	Geophysical inversion contributions to mineral exploration: lessons from the Footprints project. Canadian Journal of Earth Sciences, 2019, 56, 525-543.	1.3	10
59	On the effect of varying the pulse width to detect high conductance bodies. Exploration Geophysics, 1998, 29, 42-45.	1.1	9
60	A multiple transmitter and receiver electromagnetic system for improved target detection. Geophysics, 2015, 80, E247-E255.	2.6	9
61	Impulsive moments at work. ASEG Extended Abstracts, 2003, 2003, 1-7.	0.1	9
62	How to make better use of physical properties in mineral exploration: The exploration site measurement. The Leading Edge, 2012, 31, 330-337.	0.7	8
63	Using spatial derivatives of electromagnetic data to map lateral conductance variations in thin-sheet models: Applications over mine tailings ponds. Geophysics, 2013, 78, E225-E235.	2.6	8
64	Clustering of downhole physical property measurements at the Victoria property, Sudbury for the purpose of extracting lithological information. Journal of Applied Geophysics, 2015, 118, 145-154.	2.1	8
65	Approximate semianalytical solutions for the electromagnetic response of a dipping-sphere interacting with conductive overburden. Geophysics, 2016, 81, E265-E277.	2.6	8
66	Using a non-integer moment of the impulse response to estimate the half-space conductivity. Geophysical Prospecting, 2003, 51, 443-446.	1.9	7
67	Limitations of Two Approximate Methods for Determining the AEM Bird Position in a Conductive Environment. Exploration Geophysics, 2005, 36, 365-373.	1.1	7
68	Quantifying the Effects That Changes in Transmitter-Receiver Geometry Have on the Capability of an Airborne Electromagnetic Survey System to Detect Good Conductors. Exploration and Mining Geology, 2006, 15, 43-52.	0.5	7
69	Qualitative geophysical interpretation of the Sudbury Structure. Interpretation, 2013, 1, T25-T43.	1.1	7
70	Geophysical Case Study of the Gallen Deposit, Quebec, Canada. Exploration and Mining Geology, 2007, 16, 67-81.	0.5	6
71	Detection of alteration at the Millennium uranium deposit in the Athabasca Basin: a comparison of data from two airborne electromagnetic systems with ground resistivity data. Geophysical Prospecting, 2010, 58, 1147-1158.	1.9	6
72	Precision requirements for specifying transmitter waveforms used for modelling the off-time electromagnetic response. Exploration Geophysics, 2013, 44, 1-5.	1.1	6

#	Article	IF	CITATIONS
73	Using combinations of spatial gradients to improve the detectability of buried conductors below or within conductive material. Geophysics, 2013, 78, E19-E31.	2.6	6
74	The ratio of B-field anddB/dttime constants from time-domain electromagnetic data: a new tool for estimating size and conductivity of mineral deposits. Exploration Geophysics, 2013, 44, 238-244.	1.1	6
7 5	Decomposing the electromagnetic response of magnetic dipoles to determine the geometric parameters of a dipole conductor. Exploration Geophysics, 2016, 47, 13-23.	1.1	6
76	The impact of magnetic viscosity on time-domain electromagnetic data from iron oxide minerals embedded in rocks at Opemiska, Québec, Canada. Geophysics, 2017, 82, B165-B176.	2.6	6
77	A grid implementation of the SLUTH algorithm for visualising the depth and structural index of magnetic sources. Computers and Geosciences, 2012, 44, 100-108.	4.2	5
78	Survey design to maximize the volume of exploration of the InfiniTEM system when looking for discrete targets. Journal of Applied Geophysics, 2015, 115, 11-23.	2.1	5
79	Examining the controls on gold deposit distribution in the Swayze greenstone belt, Ontario, Canada, using multi-scale methods of spatial data analysis. Ore Geology Reviews, 2020, 125, 103671.	2.7	5
80	Evidence of magmatism and rifting in the southern superior craton from the Temagami geophysical anomaly. Precambrian Research, 2021, 362, 106310.	2.7	5
81	A New Regional Exploration Method for Detecting Hydrocarbon Alteration Plumes: the Altrex? Method. Exploration Geophysics, 1997, 28, 286-291.	1.1	4
82	Asymptotic Expansions for the Calculation of the Transient Electromagnetic Fields Induced by a Vertical Magnetic Dipole Source Above a Conductive Halfspace. Pure and Applied Geophysics, 2004, 161, 385-397.	1.9	4
83	Airborne EM measurements over the Shea Creek uranium prospect, Saskatchewan, Canada., 2006, , .		4
84	HTEM noise frequency characteristics simulation and influencing analysis. , 2015, , .		4
85	The Total Component (or vector magnitude) and the Energy Envelope as tools to interpret airborne electromagnetic data: A comparative study. Journal of Applied Geophysics, 2015, 121, 116-127.	2.1	4
86	To "The moments of the impulse response: A new paradigm for the interpretation of transient electromagnetic data―(Richard S. Smith and Terry J. Lee, GEOPHYSICS, 67, 1095–1103) Geophysics, 2003, 68, 409-409.	2.6	4
87	Transformation of magnetic data to the pole and vertical dip and a related apparent susceptibility transform: Exact and approximate approaches. Geophysics, 2022, 87, G1-G14.	2.6	4
88	Combining spatial components and Hilbert transforms to interpret ground-time-domain electromagnetic data. Geophysics, 2015, 80, E237-E246.	2.6	3
89	Benefits of using multi-component transmitter–receiver systems for determining geometrical parameters of a dipole conductor from single-line anomalies. Exploration Geophysics, 2016, 47, 1-12.	1.1	3
90	An airborne electromagnetic system with a three-component transmitter and three-component receiver capable of detecting extremely conductive bodies. Geophysics, 2018, 83, E347-E356.	2.6	3

#	Article	IF	Citations
91	Estimating overburden thickness in resistive areas from two-component airborne EM data., 2018,,.		3
92	Imaging the depth, structure and susceptibility from magnetic data: the advanced source parameter imaging method. , 2004, , .		2
93	Automation of the SLUTH method: a novel approach to airborne magnetic data interpretation. Near Surface Geophysics, 2010, 8, 519-528.	1.2	2
94	Tools used in mineral exploration for measuring the conductivity and the resistivity in drillholes and on drill core: observations on their range of sensitivity. Exploration Geophysics, 2016, 47, 315-322.	1.1	2
95	On the time decay constant of AEM systems: a semi-heuristic algorithm toÂvalidate calculations Exploration Geophysics, 2020, 51, 94-107.	1.1	2
96	Multiple-order moments of the transient electromagnetic response of a one-dimensional earth with finite conductance $\hat{a} \in \text{``theory. Exploration Geophysics, 2021, 52, 1-15.}$	1.1	2
97	Multiple-order moments of the transient electromagnetic response of a one-dimensional earth with finite conductance $\hat{a} \in \text{``the Gaussian variation applied to a field example. Exploration Geophysics, 0, , 1-13.}$	1.1	2
98	Clustering of down-hole physical properties measurement to characterize rock units at the Victoria Cu-Ni property. , $2014, $,		2
99	Generalized magnetic tiltâ€Euler deconvolution. , 2007, , .		1
100	Mapping lateral changes in conductance of a thin sheet using time-domain inductive electromagnetic data. Geophysics, 2014, 79, E1-E10.	2.6	1
101	A new method for aeromagnetic data interpolation with a focus on linear features. , 2016, , .		1
102	Induced-polarization effects in airborne electromagnetic data: Estimating chargeability from shape reversals. , 2016 , , .		1
103	Ground resistivity method and DCIP2D forward and inversion modelling to identify alteration at the Midwest uranium deposit, northern Saskatchewan, Canada. Exploration Geophysics, 2017, 48, 383-393.	1.1	1
104	Using spatial gradients of electromagnetic data to map lateral variations in mine tailings. , 2012, , .		1
105	A multiple transmitter and receiver electromagnetic system for improved target detection. , 2014, , .		1
106	Using realizable moments of the impulse response to estimate the approximate apparent conductance or apparent conductivity of the ground. , 2004, , .		1
107	Combining airborne electromagnetic data from alternate flight directions to improve data interpretability: the virtual symmetric array. , 2004, , .		1
108	An analysis of geophysical and geological data from the Gallen test site, Quebec, Canada. , 2006, , .		1

#	Article	lF	Citations
109	Automation of the SLUTH method for deriving depth and location of magnetic sources. , 2009, , .		1
110	Active and Passive Seismic Imaging of the Central Abitibi Greenstone Belt, Larder Lake, Ontario. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1
111	An experiment to compare airborne, semiâ€airborne and ground electromagnetic systems. , 2000, , .		O
112	The moments of the impulse response, a new paradigm for the interpretation of transient electromagnetic data., 2002, , .		0
113	A discrete conductor transformation of airborne electromagnetic data. , 2006, , .		0
114	Mapping tailings around mine sites with reverse polarity airborne transient EM data., 2008,,.		0
115	Conductance estimates from spatial and temporal derivatives of borehole electromagnetic data. , 2014, , .		0
116	Robust conductance estimates from spatial and temporal derivatives of borehole electromagnetic data. Geophysics, 2014, 79, E115-E123.	2.6	0
117	Inductive electromagnetic data interpretation using a 3D distribution of 3D magnetic or electric dipoles. Geophysics, 2017, 82, E187-E195.	2.6	0
118	Applications of machine learning to the spatial interpolation of aeromagnetic data., 2019,,.		0
119	Modelling the airborne electromagnetic response of a sphere beneath conductive overburden. , 2019, , .		0
120	Estimating the parameters of simple models from two-component on-time airborne electromagnetic data. Geophysics, 2022, 87, JM15-JM27.	2.6	0
121	Using airborne EM surveys to investigate the hydrogeology of an area near Nyborg, Denmark. , 2004, , .		0
122	An analysis of geophysical and geological data from the Iso/New Insco test site, Quebec, Canada. , 2006, , .		0
123	Qualitative geophysical interpretation of the Sudbury structure. , 2012, , .		0
124	Multiple-order moments of the transient electromagnetic response of a one-dimensional earth with finite conductance $\hat{a} \in \text{``An example.'}$, 2020, , .		0
125	Forward modeling and 3D inversion of electromagnetic data collected over the McArthur River uranium deposit in the Athabasca Basin, Canada. Geophysics, 2022, 87, B129-B143.	2.6	0
126	Open-source software for two-dimensional Fourier processing of gridded magnetic data. The Leading Edge, 2022, 41, 454-461.	0.7	0