Matilde Bustos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285527/publications.pdf

Version: 2024-02-01

257450 276875 41 1,843 24 41 h-index citations g-index papers 42 42 42 2377 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 787-803.	17.8	67
2	Gp130 Signaling in NOD2-Driven Crohn's Disease: A Key Player in Fibrosis and a Novel Target for Refractory Patients. Gastroenterology, 2021, 161, 1063-1065.	1.3	2
3	Cardiotrophinâ€1 contributes to metabolic adaptations through the regulation of lipid metabolism and to the fastingâ€induced fatty acid mobilization. FASEB Journal, 2020, 34, 15875-15887.	0.5	1
4	Physiopathology of Lifestyle Interventions in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 2020, 12, 3472.	4.1	27
5	Cardiotrophinâ€1 is an antiâ€inflammatory cytokine and promotes ILâ€4–induced M2 macrophage polarization. FASEB Journal, 2019, 33, 7578-7587.	0.5	8
6	Role of cardiotrophinâ€1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24â€h circulating CTâ€1 profiles in normalâ€weight and overweight/obese subjects. FASEB Journal, 2017, 31, 1639-1649.	0.5	6
7	Cardiotrophinâ€1 Regulates Adipokine Production in 3T3â€L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology, 2017, 232, 2469-2477.	4.1	6
8	Cardiotrophinâ€1 decreases intestinal sugar uptake in mice and in <scp>C</scp> acoâ€2 cells. Acta Physiologica, 2016, 217, 217-226.	3.8	11
9	Cardiotrophin-1: A multifaceted cytokine. Cytokine and Growth Factor Reviews, 2015, 26, 523-532.	7.2	41
10	Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. Journal of Lipid Research, 2014, 55, 2634-2643.	4.2	19
11	Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. Journal of Hepatology, 2014, 60, 1017-1025.	3.7	54
12	Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism: Clinical and Experimental, 2013, 62, 1429-1436.	3.4	23
13	Serotonin Skews Human Macrophage Polarization through HTR2B and HTR7. Journal of Immunology, 2013, 190, 2301-2310.	0.8	168
14	Role of cardiotrophin-1 in obesity and insulin resistance. Adipocyte, 2012, 1, 112-115.	2.8	17
15	Cardiotrophin-1 determines liver engraftment of syngenic colon carcinoma cells through an immune system-mediated mechanism. Oncolmmunology, 2012, 1, 1527-1536.	4.6	8
16	Eicosapentaenoic acid inhibits tumour necrosis factor- $\hat{\mathbf{l}}$ +-induced lipolysis in murine cultured adipocytes. Journal of Nutritional Biochemistry, 2012, 23, 218-227.	4.2	31
17	Cardiotrophin-1 Is a Key Regulator of Glucose and Lipid Metabolism. Cell Metabolism, 2011, 14, 242-253.	16.2	103
18	Role of obesity-associated dysfunctional adipose tissue in cancer: A molecular nutrition approach. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 664-678.	1.0	126

#	Article	IF	CITATIONS
19	Cardiotrophin-1 Promotes a High Survival Rate in Rabbits with Lethal Fulminant Hepatitis of Viral Origin. Journal of Virology, 2011, 85, 13124-13132.	3.4	32
20	Cardiotrophin-1: a new player in energy metabolism with potential therapeutic application. Aging, 2011, 3, 698-699.	3.1	0
21	Eicosapentaenoic acid upâ€regulates apelin secretion and gene expression in 3T3‣1 adipocytes. Molecular Nutrition and Food Research, 2010, 54, S104-11.	3.3	43
22	The pathogen receptor liver and lymph node sinusoidal endotelial cell C-type lectin is expressed in human Kupffer cells and regulated by PU.1. Hepatology, 2009, 49, 287-296.	7.3	40
23	Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clinical Science, 2009, 117, 243-249.	4.3	69
24	Cardiotrophin-1 is an essential factor in the natural defense of the liver against apoptosis. Hepatology, 2007, 45, 639-648.	7.3	36
25	Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning. Journal of Experimental Medicine, 2006, 203, 2809-2815.	8.5	62
26	Interplay among cardiotrophin-1, prostaglandins, and vascular endothelial growth factor in rat liver regeneration. Hepatology, 2005, 41, 460-469.	7.3	40
27	Protection against liver damage by cardiotrophin-1: a hepatocyte survival factor up-regulated in the regenerating liver in rats. Gastroenterology, 2003, 125, 192-201.	1.3	82
28	A synthetic peptide from transforming growth factor \hat{l}^2 type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine, 2003, 22, 12-20.	3.2	114
29	Liver Failure Caused by Herpes Simplex Virus Thymidine Kinase Plus Ganciclovir Therapy Is Associated with Mitochondrial Dysfunction and Mitochondrial DNA Depletion. Human Gene Therapy, 2003, 14, 463-472.	2.7	40
30	Apoptosis and Cellular Activation in the Pathogenesis of Acute Vascular Rejection. Circulation Research, 2002, 91, 1135-1141.	4. 5	44
31	Immune Complex Formation after Xenotransplantation. American Journal of Pathology, 2001, 158, 627-637.	3 . 8	42
32	The Pathology of Cardiac Xenografts. Journal of Cardiac Surgery, 2001, 16, 357-362.	0.7	6
33	$\hat{l}\pm v\hat{l}^2$ 3 Integrin-Mediated Adenoviral Transfer of Interleukin-12 at the Periphery of Hepatic Colon Cancer Metastases Induces VCAM-1 Expression and T-Cell Recruitment. Molecular Therapy, 2001, 3, 665-672.	8.2	20
34	PLATELET-MEDIATED ACTIVATION OF ENDOTHELIAL CELLS: IMPLICATIONS FOR THE PATHOGENESIS OF TRANSPLANT REJECTION1. Transplantation, 2001, 72, 509-515.	1.0	40
35	Liver Damage using Suicide Genes. American Journal of Pathology, 2000, 157, 549-559.	3.8	35
36	ALTERED INTRAGRAFT IMMUNE RESPONSES AND IMPROVED RENAL FUNCTION IN MHC CLASS II-DEFICIENT MOUSE KIDNEY ALLOGRAFTS12. Transplantation, 2000, 69, 2137-2143.	1.0	20

MATILDE BUSTOS

#	Article	IF	CITATIONS
37	Chronic rejection of mouse kidney allografts. Kidney International, 1999, 55, 1935-1944.	5.2	57
38	Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1455, 12-22.	3.8	68
39	Transplantation of discordant xenografts: a challenge revisited. Trends in Immunology, 1996, 17, 373-378.	7.5	227
40	Ectopic somatic endoderm in secondary human yolk sac. Human Pathology, 1992, 23, 921-924.	2.0	5
41	Letters to the Editors. Clinical Endocrinology, 1991, 34, 432-432.	2.4	2