Daniel A Pijnappels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/828548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovascular Research, 2022, 118, 2293-2303.	3.8	12
2	Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nature Biomedical Engineering, 2022, 6, 389-402.	22.5	16
3	Ultrasound-Guided Optogenetic Gene Delivery for Shock-Free Ventricular Rhythm Restoration. Circulation: Arrhythmia and Electrophysiology, 2022, 15, CIRCEP121009886.	4.8	1
4	Conditional immortalization of human cardiomyocytes for translational <i>in vitro</i> modelling of cardiovascular Research, 2022, 118, e105-e107.	3.8	0
5	Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity. Circulation Research, 2022, 131, 24-41.	4.5	5
6	Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Science Translational Medicine, 2021, 13, .	12.4	48
7	The Effects of Repetitive Use and Pathological Remodeling on Channelrhodopsin Function in Cardiomyocytes. Frontiers in Physiology, 2021, 12, 710020.	2.8	4
8	Optogenetic Control of Arrhythmias. , 2021, , 363-379.		0
9	The heart as its own defibrillator. European Heart Journal, 2020, 41, 2829-2832.	2.2	3
10	Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 2020, 7, 43.	2.4	21
11	Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. Circulation Research, 2020, 127, 229-243.	4.5	33
12	Universal mechanisms for self-termination of rapid cardiac rhythm. Chaos, 2020, 30, 121107.	2.5	3
13	Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. ELife, 2020, 9, .	6.0	12
14	10.1063/5.0033813.1., 2020, , .		0
15	Optogenetics for cardiac pacing, resynchronization, and arrhythmia termination. , 2020, , 861-890.		0
16	Cardiomyocyte–myofibroblast contact dynamism is modulated by connexinâ€43. FASEB Journal, 2019, 33, 10453-10468.	0.5	28
17	DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nature Communications, 2019, 10, 1307.	12.8	85
18	An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Science Translational Medicine, 2019, 11, .	12.4	50

DANIEL A PIJNAPPELS

#	Article	IF	CITATIONS
19	Whole human heart histology to validate electroanatomical voltage mapping in patients with non-ischaemic cardiomyopathy and ventricular tachycardia. European Heart Journal, 2018, 39, 2867-2875.	2.2	113
20	Response by Feola et al to Letter Regarding Article, "Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers― Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006130.	4.8	0
21	Fast nonclinical ventricular tachycardia inducible after ablation in patients with structural heart disease: Definition and clinical implications. Heart Rhythm, 2018, 15, 668-676.	0.7	19
22	Biological defibrillation. European Heart Journal, 2018, 39, 3915-3917.	2.2	0
23	Paradoxical Onset of Arrhythmic Waves from Depolarized Areas in Cardiac Tissue Due to Curvature-Dependent Instability. Physical Review X, 2018, 8, 021077.	8.9	9
24	Generation and primary characterization of iAM-1, a versatile new line of conditionally immortalized atrial myocytes with preserved cardiomyogenic differentiation capacity. Cardiovascular Research, 2018, 114, 1848-1859.	3.8	22
25	Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. ELife, 2018, 7, .	6.0	49
26	Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal, 2017, 38, ehw574.	2.2	82
27	Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block. Cardiovascular Research, 2017, 113, 354-366.	3.8	31
28	Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	50
29	RHOA-ROCK signalling is necessary for lateralization and differentiation of the developing sinoatrial node. Cardiovascular Research, 2017, 113, 1186-1197.	3.8	17
30	Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 2016, 6, 24334.	3.3	22
31	Allosteric Modulation of K _v 11.1 (hERG) Channels Protects Against Drug-Induced Ventricular Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003439.	4.8	24
32	Chatty Cells. JACC: Clinical Electrophysiology, 2016, 2, 583-586.	3.2	0
33	QRS prolongation after premature stimulation is associated with polymorphic ventricular tachycardia in nonischemic cardiomyopathy: Results from the Leiden Nonischemic Cardiomyopathy Study. Heart Rhythm, 2016, 13, 860-869.	0.7	7
34	Optogenetic Engineering of Atrial Cardiomyocytes. Methods in Molecular Biology, 2016, 1408, 319-331.	0.9	12
35	A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current. PLoS Computational Biology, 2016, 12, e1004946.	3.2	15
36	Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation. Scientific Reports, 2015, 5, 15187.	3.3	7

#	Article	IF	CITATIONS
37	Decreased repolarization reserve increases defibrillation threshold by favoring early afterdepolarizations in an in silico model of human ventricular tissue. Heart Rhythm, 2015, 12, 1088-1096.	0.7	11
38	Fatigue as Presenting Symptom and a High Burden of Premature Ventricular Contractions Are Independently Associated With Increased Ventricular Wall Stress in Patients With Normal Left Ventricular Function. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1452-1459.	4.8	18
39	Forced fusion of human ventricular scar cells with cardiomyocytes suppresses arrhythmogenicity in a co-culture model. Cardiovascular Research, 2015, 107, 601-612.	3.8	3
40	Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovascular Research, 2014, 104, 194-205.	3.8	108
41	Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovascular Research, 2014, 102, 224-231.	3.8	23
42	Cardiac Anisotropy, Regeneration, and Rhythm. Circulation Research, 2014, 115, e6-7.	4.5	3
43	Insulin-Like Growth Factor Promotes Cardiac Lineage Induction In Vitro by Selective Expansion of Early Mesoderm. Stem Cells, 2014, 32, 1493-1502.	3.2	38
44	Depolarization-induced automaticity in rat ventricular cardiomyocytes is based on the gating properties of L-type calcium and slow Kv channels. European Biophysics Journal, 2013, 42, 241-255.	2.2	3
45	Atrium-Specific Kir3.x Determines Inducibility, Dynamics, and Termination of Fibrillation by Regulating Restitution-Driven Alternans. Circulation, 2013, 128, 2732-2744.	1.6	30
46	Engraftment Patterns of Human Adult Mesenchymal Stem Cells Expose Electrotonic and Paracrine Proarrhythmic Mechanisms in Myocardial Cell Cultures. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 380-391.	4.8	30
47	Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization. Cardiovascular Research, 2013, 97, 161-170.	3.8	21
48	Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms. Cardiovascular Research, 2013, 97, 171-181.	3.8	16
49	Prolongation of minimal action potential duration in sustained fibrillation decreases complexity by transient destabilization: reply. Cardiovascular Research, 2013, 98, 156-157.	3.8	0
50	Outcome of Ventricular Tachycardia Ablation in Patients With Nonischemic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 513-521.	4.8	93
51	Connexin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures: role of maximal diastolic potential. Cardiovascular Research, 2012, 93, 434-444.	3.8	40
52	Cardiomyogenic differentiationâ€independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischaemic mouse hearts. Journal of Cellular and Molecular Medicine, 2012, 16, 1508-1521.	3.6	39
53	Brief Report: Misinterpretation of Coculture Differentiation Experiments by Unintended Labeling of Cardiomyocytes Through Secondary Transduction: Delusions and Solutions. Stem Cells, 2012, 30, 2830-2834.	3.2	5
54	Gap Junctional Coupling with Cardiomyocytes is Necessary but Not Sufficient for Cardiomyogenic Differentiation of Cocultured Human Mesenchymal Stem Cells. Stem Cells, 2012, 30, 1236-1245.	3.2	28

DANIEL A PIJNAPPELS

#	Article	IF	CITATIONS
55	Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts. PLoS ONE, 2011, 6, e24164.	2.5	64
56	Antiproliferative treatment of myofibroblasts prevents arrhythmias in vitro by limiting myofibroblast-induced depolarization. Cardiovascular Research, 2011, 90, 295-304.	3.8	33
57	The integrative aspects of cardiac physiology and their implications for cellâ€based therapy. Annals of the New York Academy of Sciences, 2010, 1188, 7-14.	3.8	20
58	Response to the Letter by Rose et al. Circulation Research, 2009, 104, e8.	4.5	2
59	Forced Myocardin Expression Enhances the Therapeutic Effect of Human Mesenchymal Stem Cells After Transplantation in Ischemic Mouse Hearts. Stem Cells, 2008, 26, 1083-1093.	3.2	60
60	Forced Alignment of Mesenchymal Stem Cells Undergoing Cardiomyogenic Differentiation Affects Functional Integration With Cardiomyocyte Cultures. Circulation Research, 2008, 103, 167-176.	4.5	131
61	Fibroblasts from human postmyocardial infarction scars acquire properties of cardiomyocytes after transduction with a recombinant myocardin gene. FASEB Journal, 2007, 21, 3369-3379.	0.5	41
62	Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2438-H2447.	3.2	57
63	Resynchronization of Separated Rat Cardiomyocyte Fields With Genetically Modified Human Ventricular Scar Fibroblasts. Circulation, 2007, 116, 2018-2028.	1.6	24
64	Epicardial Cells of Human Adults Can Undergo an Epithelial-to-Mesenchymal Transition and Obtain Characteristics of Smooth Muscle Cells In Vitro. Stem Cells, 2007, 25, 271-278.	3.2	160
65	Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovascular Research, 2006, 72, 282-291.	3.8	60
66	Human Adult Bone Marrow Mesenchymal Stem Cells Repair Experimental Conduction Block in Rat Cardiomyocyte Cultures. Journal of the American College of Cardiology, 2005, 46, 1943-1952.	2.8	101