
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8285426/publications.pdf

Version: 2024-02-01

ΜΑΡΚΙζΖΛΙΛ

#	Article	IF	CITATIONS
1	Mouse liver injury induces hepatic macrophage FGF23 production. PLoS ONE, 2022, 17, e0264743.	1.1	8
2	Redundant Functions of ERK1 and ERK2 Maintain Mouse Liver Homeostasis Through Downâ€Regulation of Bile Acid Synthesis. Hepatology Communications, 2022, 6, 980-994.	2.0	9
3	Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biology, 2022, 55, 102407.	3.9	19
4	Sex‧pecific Regulation of Interferonâ€Î³ Cytotoxicity in Mouse Liver by Autophagy. Hepatology, 2021, 74, 2745-2758.	3.6	8
5	Stathmin 1 Induces Murine Hepatocyte Proliferation and Increased Liver Mass. Hepatology Communications, 2020, 4, 38-49.	2.0	8
6	Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. Journal of Hepatology, 2020, 73, 1013-1022.	1.8	47
7	Decreased Hepatocyte Autophagy Leads to Synergistic ILâ€1β and TNF Mouse Liver Injury and Inflammation. Hepatology, 2020, 72, 595-608.	3.6	49
8	A Novel Mechanism of Starvation‣timulated Hepatic Autophagy: Calciumâ€Induced Oâ€GlcNAcâ€Dependent Signaling. Hepatology, 2019, 69, 446-448.	3.6	6
9	Acetaminophen Intoxication Rapidly Induces Apoptosis of Intestinal Crypt Stem Cells and Enhances Intestinal Permeability. Hepatology Communications, 2019, 3, 1435-1449.	2.0	21
10	Glial Cell Line–Derived Neurotrophic Factor Enhances Autophagic Flux in Mouse and Rat Hepatocytes and Protects Against Palmitate Lipotoxicity. Hepatology, 2019, 69, 2455-2470.	3.6	15
11	Decreased Macrophage Autophagy Promotes Liver Injury and Inflammation from Alcohol. Alcoholism: Clinical and Experimental Research, 2019, 43, 1403-1413.	1.4	21
12	Inflammasomeâ€mediated inflammation and fibrosis: It is more than just the ILâ€1β. Hepatology, 2018, 67, 479-481.	3.6	12
13	Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nature Communications, 2018, 9, 4962.	5.8	111
14	Oxidized Albumin—A Trojan Horse for p38 MAPKâ€Mediated Inflammation in Decompensated Cirrhosis. Hepatology, 2018, 68, 1678-1680.	3.6	6
15	Pentamidine blocks hepatotoxic injury in mice. Hepatology, 2017, 66, 922-935.	3.6	17
16	Regulation and Functions of Autophagic Lipolysis. Trends in Endocrinology and Metabolism, 2016, 27, 696-705.	3.1	116
17	Autophagy confers resistance to lipopolysaccharide-induced mouse hepatocyte injury. American Journal of Physiology - Renal Physiology, 2016, 311, G377-G386.	1.6	41
18	Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney International, 2016, 90, 985-996.	2.6	284

#	Article	IF	CITATIONS
19	Function of Autophagy in Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 2016, 61, 1304-1313.	1.1	149
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-11². Journal of Hepatology, 2016, 64, 118-127.	1.8	115
22	Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy, 2015, 11, 271-284.	4.3	349
23	A new mechanism of lipotoxicity: Calcium channel blockers as a treatment for nonalcoholic steatohepatitis?. Hepatology, 2015, 62, 312-314.	3.6	8
24	Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biology, 2014, 3, 7-15.	3.9	59
25	High-Mobility Group Box 1 Is Dispensable for Autophagy, Mitochondrial Quality Control, and Organ Function InÁVivo. Cell Metabolism, 2014, 19, 539-547.	7.2	82
26	ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. Journal of Hepatology, 2014, 61, 1126-1134.	1.8	89
27	Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK. PLoS ONE, 2014, 9, e109750.	1.1	16
28	Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology, 2013, 57, 995-1004.	3.6	94
29	Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.	4.3	384
30	Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues. Gastroenterology, 2012, 142, 938-946.	0.6	523
31	Distinct functions of JNK and câ€Jun in oxidantâ€induced hepatocyte death. Journal of Cellular Biochemistry, 2012, 113, 3254-3265.	1.2	21
32	Functions of Autophagy in Hepatic and Pancreatic Physiology and Disease. Gastroenterology, 2011, 140, 1895-1908.	0.6	156
33	Autophagy in nonalcoholic steatohepatitis. Expert Review of Gastroenterology and Hepatology, 2011, 5, 159-166.	1.4	193
34	Regulation of lipid droplets by autophagy. Trends in Endocrinology and Metabolism, 2011, 22, 234-240.	3.1	185
35	Two types of autophagy are better than one during hepatocyte oxidative stress. Autophagy, 2011, 7, 96-97.	4.3	9
36	Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology, 2010, 52, 266-277.	3.6	108

#	Article	IF	CITATIONS
37	Nuclear factor l [°] B up-regulation of CCAAT/enhancer-binding protein l ² mediates hepatocyte resistance to tumor necrosis factor l± toxicity. Hepatology, 2010, 52, 2118-2126.	3.6	17
38	JNK regulation of hepatic manifestations of the metabolic syndrome. Trends in Endocrinology and Metabolism, 2010, 21, 707-713.	3.1	100
39	Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. American Journal of Physiology - Cell Physiology, 2010, 298, C973-C978.	2.1	119
40	Autophagy regulates adipose mass and differentiation in mice. Journal of Clinical Investigation, 2009, 119, 3329-39.	3.9	580
41	Lipases in lysosomes, what for?. Autophagy, 2009, 5, 866-867.	4.3	26
42	Chronic oxidative stress sensitizes hepatocytes to death from 4-hydroxynonenal by JNK/c-Jun overactivation. American Journal of Physiology - Renal Physiology, 2009, 297, G907-G917.	1.6	58
43	Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology, 2009, 49, 87-96.	3.6	190
44	Autophagy regulates lipid metabolism. Nature, 2009, 458, 1131-1135.	13.7	3,149
45	Loss of Macroautophagy Promotes or Prevents Fibroblast Apoptosis Depending on the Death Stimulus. Journal of Biological Chemistry, 2008, 283, 4766-4777.	1.6	119
46	Compensatory mechanisms and the type of injury determine the fate of cells with impaired macroautophagy. Autophagy, 2008, 4, 516-518.	4.3	12
47	Cell Signaling in Oxidative Stress-Induced Liver Injury. Seminars in Liver Disease, 2007, 27, 378-389.	1.8	133
48	Regulation of hepatocyte apoptosis by oxidative stress. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S45-S48.	1.4	86
49	Jnk1 but not jnk2 promotes the development of steatohepatitis in mice. Hepatology, 2006, 43, 163-172.	3.6	348
50	Tumor Necrosis Factor-induced Toxic Liver Injury Results from JNK2-dependent Activation of Caspase-8 and the Mitochondrial Death Pathway. Journal of Biological Chemistry, 2006, 281, 15258-15267.	1.6	192
51	Hepatocyte CYP2E1 Overexpression and Steatohepatitis Lead to Impaired Hepatic Insulin Signaling. Journal of Biological Chemistry, 2005, 280, 9887-9894.	1.6	174
52	Capitalizing on AKT signaling to inhibit hepatocellular carcinoma cell proliferation. Cancer Biology and Therapy, 2005, 4, 1419-1421.	1.5	8
53	Hepatocyte Resistance to Oxidative Stress Is Dependent on Protein Kinase C-mediated Down-regulation of c-Jun/AP-1. Journal of Biological Chemistry, 2004, 279, 31089-31097.	1.6	72
54	CYP2E1 overexpression alters hepatocyte death from menadione and fatty acids by activation of ERK1/2 signaling. Hepatology, 2004, 39, 444-455.	3.6	65

#	Article	IF	CITATIONS
55	Liver injury in the setting of steatosis: Crosstalk between adipokine and cytokine. Hepatology, 2004, 40, 19-22.	3.6	65
56	Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology, 2003, 37, 1405-1413.	3.6	118
57	Ask(1) and you shall receive: A new link between antioxidants and cell death signaling. Hepatology, 2003, 38, 252-254.	3.6	0
58	III. JNK/AP-1 regulation of hepatocyte death. American Journal of Physiology - Renal Physiology, 2003, 284, G875-G879.	1.6	105
59	Cytochrome P450 2E1 Expression Induces Hepatocyte Resistance to Cell Death from Oxidative Stress. Antioxidants and Redox Signaling, 2002, 4, 701-709.	2.5	32
60	Induction and Regulation of Hepatocyte Apoptosis by Oxidative Stress. Antioxidants and Redox Signaling, 2002, 4, 759-767.	2.5	106
61	Induction of cyclooxygenase-2 by tumor promoters in transformed and cytochrome P450 2E1-expressing hepatocytes. Carcinogenesis, 2002, 23, 73-79.	1.3	20
62	NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology, 2002, 35, 772-778.	3.6	180
63	TNF toxicity—Death from caspase or cathepsin, that is the question. Hepatology, 2001, 34, 844-846.	3.6	9
64	Inhibition of c-Myc Expression Sensitizes Hepatocytes to Tumor Necrosis Factor-induced Apoptosis and Necrosis. Journal of Biological Chemistry, 2000, 275, 40155-40162.	1.6	34
65	Hepatocytes Sensitized to Tumor Necrosis Factor-α Cytotoxicity Undergo Apoptosis through Caspase-dependent and Caspase-independent Pathways. Journal of Biological Chemistry, 2000, 275, 705-712.	1.6	97
66	Ceramide induces caspase-independent apoptosis in rat hepatocytes sensitized by inhibition of RNA synthesis. Hepatology, 1999, 30, 215-222.	3.6	50
67	Copper resistant human hepatoblastoma mutant cell lines without metallothionein induction overexpress ATP7B. Hepatology, 1998, 28, 1347-1356.	3.6	22
68	NF-κB inactivation converts a hepatocyte cell line TNF-α response from proliferation to apoptosis. American Journal of Physiology - Cell Physiology, 1998, 275, C1058-C1066.	2.1	166
69	c-myc-dependent hepatoma cell apoptosis results from oxidative stress and not a deficiency of growth factors. Journal of Cellular Physiology, 1997, 170, 192-199.	2.0	71
70	Prevention of carbon tetrachloride-induced rat liver injury by soluble tumor necrosis factor receptor. Gastroenterology, 1995, 108, 1849-1854.	0.6	187
71	Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology, 1994, 19, 1282-1289.	3.6	57
72	Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. Journal of Leukocyte Biology, 1994, 55, 120-126.	1.5	114

#	Article	IF	CITATIONS
73	Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology, 1994, 19, 1282-1289.	3.6	5
74	Timing of protooncogene expression varies in toxin-induced liver regeneration. Journal of Cellular Physiology, 1993, 154, 294-300.	2.0	51
75	Ito cell expression of a nuclear retinoic acid receptor. Hepatology, 1992, 15, 336-342.	3.6	60
76	Amplification of the metallothionein-1 and metallothionein-2 genes in copper-resistant hepatoma cells. Journal of Cellular Physiology, 1991, 147, 434-438.	2.0	23
77	Ito-cell gene expression and collagen regulation. Hepatology, 1990, 11, 111-117.	3.6	186
78	Expression of Tumor Necrosis Factor-Î \pm and Transforming Growth Factor-Î 21 in Acute Liver Injury. Growth Factors, 1989, 1, 219-226.	0.5	85
79	γ-interferon treatment inhibits collagen deposition in murine schistosomiasis. Hepatology, 1989, 10, 795-800.	3.6	199
80	Development of molecular hybridization technology to evaluate albumin and procollagen mrna content in baboons and man. Hepatology, 1987, 7, 19S-25S.	3.6	13