
## Naoyuki Kishimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284928/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Advanced oxidation effect of ozonation combined with electrolysis. Water Research, 2005, 39, 4661-4672.                                                                                                         | 11.3 | 96        |
| 2  | Reusability of iron sludge as an iron source for theÂelectrochemical Fenton-type process using<br>Fe2+/HOCl system. Water Research, 2013, 47, 1919-1927.                                                        | 11.3 | 95        |
| 3  | Bromate Ion Removal by Electrochemical Reduction Using an Activated Carbon Felt Electrode.<br>Environmental Science & Technology, 2009, 43, 2054-2059.                                                          | 10.0 | 70        |
| 4  | Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte. Water Research, 2008, 42, 379-385.                                                   | 11.3 | 64        |
| 5  | State of the Art of UV/Chlorine Advanced Oxidation Processes: Their Mechanism, Byproducts<br>Formation, Process Variation, and Applications. Journal of Water and Environment Technology, 2019,<br>17, 302-335. | 0.7  | 47        |
| 6  | Color Removal of Reactive Procion Dyes by Clay Adsorbents. Procedia Environmental Sciences, 2013, 17, 270-278.                                                                                                  | 1.4  | 46        |
| 7  | Mechanistic Consideration of Zinc Ion Removal by Zero-Valent Iron. Water, Air, and Soil Pollution, 2011, 221, 183-189.                                                                                          | 2.4  | 34        |
| 8  | Applicability of Ozonation Combined with Electrolysis to 1,4-Dioxane Removal from Wastewater Containing Radical Scavengers. Ozone: Science and Engineering, 2007, 29, 13-22.                                    | 2.5  | 30        |
| 9  | Technical feasibility of UV/electro-chlorine advanced oxidation process and pH response. Chemical Engineering Journal, 2018, 334, 2363-2372.                                                                    | 12.7 | 30        |
| 10 | Advanced treatment of sewage by pre-coagulation and biological filtration process. Water Research, 2003, 37, 4259-4269.                                                                                         | 11.3 | 29        |
| 11 | Effect of oxidation–reduction potential on an electrochemical Fenton-type process. Chemical<br>Engineering Journal, 2015, 260, 590-595.                                                                         | 12.7 | 26        |
| 12 | Effects of waste glass additions on quality of textile sludge-based bricks. Environmental Technology<br>(United Kingdom), 2015, 36, 2443-2450.                                                                  | 2.2  | 24        |
| 13 | Influence of Chelating Agents on Fenton-Type Reaction Using Ferrous Ion and Hypochlorous Acid.<br>Journal of Water and Environment Technology, 2013, 11, 21-32.                                                 | 0.7  | 23        |
| 14 | Rapid removal of bromate ion from water streams with an electrolytic flow cell. Journal of Water<br>Supply: Research and Technology - AQUA, 2012, 61, 103-110.                                                  | 1.4  | 22        |
| 15 | Treatment of Paper and Pulp Mill Wastewater by Ozonation Combined with Electrolysis. Journal of<br>Water and Environment Technology, 2010, 8, 99-109.                                                           | 0.7  | 21        |
| 16 | Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite. Environmental Technology (United Kingdom), 2015, 36, 2436-2442.                          | 2.2  | 19        |
| 17 | Characteristics of Electrolysis, Ozonation, and their Combination Process on Treatment of Municipal<br>Wastewater. Water Environment Research, 2007, 79, 1033-1042.                                             | 2.7  | 18        |
| 18 | Analysis of long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa.<br>Limnology, 2013, 14, 117-128.                                                                                 | 1.5  | 18        |

ΝΑΟΥUKI KISHIMOTO

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent Developments in Electrochemical Technology for Water and Wastewater Treatments. Journal of Water and Environment Technology, 2016, 14, 25-36.                                                                     | 0.7  | 17        |
| 20 | Efficacy of a two-compartment electrochemical flow cell introduced into a reagent-free UV/chlorine advanced oxidation process. Chemical Engineering Journal, 2020, 388, 124385.                                          | 12.7 | 17        |
| 21 | Evaluation of Growth Characteristics of <i>Euglena gracilis</i> for Microalgal Biomass<br>Production Using Wastewater. Journal of Water and Environment Technology, 2015, 13, 195-205.                                   | 0.7  | 14        |
| 22 | Effects of oxidation–reduction potential control and sequential use of biological treatment on the electrochemical Fenton-type process. Chemical Engineering Research and Design, 2017, 105, 134-142.                    | 5.6  | 14        |
| 23 | Fouling behaviour of a reverse osmosis membrane by three types of surfactants. Journal of Water<br>Reuse and Desalination, 2012, 2, 40-46.                                                                               | 2.3  | 13        |
| 24 | Effect of Separation of Ozonation and Electrolysis on Effective Use of Ozone in Ozone-Electrolysis<br>Process. Ozone: Science and Engineering, 2011, 33, 463-469.                                                        | 2.5  | 12        |
| 25 | Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes. International Journal of Photoenergy, 2012, 2012, 1-10.                                     | 2.5  | 12        |
| 26 | Adsorption characteristics of clay adsorbents – sepiolite, kaolin and synthetic talc – for removal of<br><scp>R</scp> eactive <scp>Y</scp> ellow 138:1. Water and Environment Journal, 2015, 29, 375-382.                | 2.2  | 12        |
| 27 | Influence of temperature and COD loading on biological nitrification–denitrification process using a trickling filter: an empirical modeling approach. International Journal of Environmental Research, 2017, 11, 71-82. | 2.3  | 12        |
| 28 | Technical Feasibility of Electrochemical Fenton-Type Process Using Cu(I)/HOCl System. Journal of<br>Water and Environment Technology, 2018, 16, 73-82.                                                                   | 0.7  | 12        |
| 29 | Catalytic Effect of Several Iron Species on Ozonation. Journal of Water and Environment Technology, 2012, 10, 205-215.                                                                                                   | 0.7  | 11        |
| 30 | Reusability of zero-valent iron particles for zinc ion separation. Separation and Purification Technology, 2018, 193, 139-146.                                                                                           | 7.9  | 10        |
| 31 | Effects of three additives on the removal of perfluorooctane sulfonate (PFOS) by coagulation using ferric chloride or aluminum sulfate. Water Science and Technology, 2016, 73, 2971-2977.                               | 2.5  | 9         |
| 32 | Methylene blue removal by carbonized textile sludge-based adsorbent. Water Science and Technology, 2017, 76, 3126-3134.                                                                                                  | 2.5  | 9         |
| 33 | Feasibility of Mercury-free Chemical Oxygen Demand (COD) Test with Excessive Addition of Silver Sulfate. Journal of Water and Environment Technology, 2018, 16, 221-232.                                                 | 0.7  | 9         |
| 34 | Ozonation Combined with Electrolysis of Night Soil Treated by Biological<br>Nitrification-Denitrification Process. Ozone: Science and Engineering, 2008, 30, 282-289.                                                    | 2.5  | 8         |
| 35 | Applicability of an electrochemical Fenton-type process to actual wastewater treatment. Water Science and Technology, 2015, 72, 850-857.                                                                                 | 2.5  | 8         |
| 36 | Effects of Ozone-Gas Bubble Size and pH on Ozone/UV Treatment. Ozone: Science and Engineering, 2011, 33, 396-402.                                                                                                        | 2.5  | 7         |

ΝΑΟΥUKI KISHIMOTO

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of Phosphorus Concentration on the Biodegradation of Dissolved Organic Matter in Lake<br>Biwa, Japan. Journal of Water and Environment Technology, 2011, 9, 215-223.                                                                                | 0.7 | 7         |
| 38 | Effects of recirculation rate of nitrified liquor and temperature on biological<br>nitrification–denitrification process using a trickling filter. Water and Environment Journal, 2016, 30,<br>190-196.                                                       | 2.2 | 7         |
| 39 | Characteristics of fluoride adsorption onto aluminium(III) and iron(III) hydroxide flocs. Separation Science and Technology, 2017, 52, 42-50.                                                                                                                 | 2.5 | 7         |
| 40 | Effect of Active Control of Air-Cathode pH on the Performance of a Microbial Fuel Cell. Journal of Water and Environment Technology, 2013, 11, 453-461.                                                                                                       | 0.7 | 6         |
| 41 | Roughness and temperature effects on the filter media of a trickling filter for nitrification.<br>Environmental Technology (United Kingdom), 2014, 35, 1549-1555.                                                                                             | 2.2 | 6         |
| 42 | Mechanistic Consideration of Fluoride Removal Using Aluminum Sulfate. Journal of Water and Environment Technology, 2015, 13, 15-24.                                                                                                                           | 0.7 | 6         |
| 43 | Does a Decrease in Chlorophyll <l>a</l> Concentration in Lake Biwa Mean a Decrease in<br>Primary Productivity by Phytoplankton?. Journal of Water and Environment Technology, 2015, 13, 1-14.                                                                 | 0.7 | 5         |
| 44 | Effects of Several Factors on Operation of an Electro-Advanced Oxidation Process using Fe2+/HOCl System. Journal of Japan Society on Water Environment, 2011, 34, 81-87.                                                                                      | 0.4 | 4         |
| 45 | Efficacy of vacuum ultraviolet photolysis for bromate and chlorate removal. Water Science and<br>Technology: Water Supply, 2015, 15, 810-816.                                                                                                                 | 2.1 | 4         |
| 46 | Effects of pH and coexisting chemicals on photolysis of perfluorooctane sulfonate using an excited xenon dimer lamp. Water Science and Technology, 2018, 77, 108-113.                                                                                         | 2.5 | 4         |
| 47 | Catalytic Effect of Copper on Ozonation in Aqueous Solution. Ozone: Science and Engineering, 2021, 43, 520-526.                                                                                                                                               | 2.5 | 4         |
| 48 | Catalytic Effect of Copper on Ozonation in Aqueous Solution. Ozone: Science and Engineering, 0, , 1-8.                                                                                                                                                        | 2.5 | 3         |
| 49 | Dependency of Advanced Oxidation Performance on the Contaminated Water Feed Mode for<br>Ozonation Combined with Electrolysis Using a Two-compartment Electrolytic Flow Cell. Journal of<br>Advanced Oxidation Technologies, 2007, 10, .                       | 0.5 | 2         |
| 50 | Removal of Persistent Organic Compounds and Total Nitrogen in Wastewater by Ozonation Combined<br>with Electrolysis Using Two-Compartment Electrolytic Flow Cell with Solid Electrolyte. Journal of<br>Japan Society on Water Environment, 2008, 31, 359-365. | 0.4 | 2         |
| 51 | Restoration of hypolimnetic dissolved oxygen through light irradiation-induced periphyton production. Lakes and Reservoirs: Research and Management, 2009, 14, 163-169.                                                                                       | 0.9 | 2         |
| 52 | Relationship between Lakeshore Configuration and Siltation in the East Coast of the Northern Basin<br>of Lake Biwa. Journal of Japan Society on Water Environment, 2014, 37, 45-53.                                                                           | 0.4 | 2         |
| 53 | Influence of Operating Factors on Advanced Oxidation Performance of an Electrochemical Flow Cell<br>Using a Fenton-type Reaction. Journal of Japan Society on Water Environment, 2015, 38, 93-99.                                                             | 0.4 | 2         |
| 54 | Efficacy of an electrochemical flow cell introduced into the electrochemical Fenton-type process<br>using a Cu(I)/HOCl system. Water Science and Technology, 2019, 80, 184-190.                                                                               | 2.5 | 2         |

ΝΑΟΥUKI KISHIMOTO

| #  | Article                                                                                                                                                                                           | IF          | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 55 | Model-Based Evaluation of the Effect of Discharge-Charge on Electric Power Generation of Microbial<br>Fuel Cells. Journal of Water and Environment Technology, 2019, 17, 100-108.                 | 0.7         | 2             |
| 56 | Removal of linear alkylbenzene sulfonate (LAS) by a cetyltrimethylammonium bromide (CTAB)-aided coagulation-filtration process. Environmental Technology (United Kingdom), 2020, , 1-9.           | 2.2         | 2             |
| 57 | Advanced oxidation mechanism of UV photolysis of electrochemically generated free bromine.<br>Environmental Technology (United Kingdom), 2022, 43, 1761-1769.                                     | 2.2         | 2             |
| 58 | Effect of Acidification on Ozone-Electrolysis Advanced Oxidation Process. Ozone: Science and Engineering, 0, , 1-9.                                                                               | 2.5         | 2             |
| 59 | Motor Vehicle Wash-off Water as a Source of Phosphorus in Roadway Runoff. Journal of Water and<br>Environment Technology, 2020, 18, 9-16.                                                         | 0.7         | 2             |
| 60 | Evaluation of Methods for Measuring Internal Resistances of Discharging Microbial Fuel Cells.<br>Journal of Water and Environment Technology, 2022, 20, 1-10.                                     | 0.7         | 2             |
| 61 | Influence of Cultural Conditions on the Cellular Biovolume and Gelatinous Sheath Volume of<br>Staurastrum arctiscon (Charophyceae). Journal of Water and Environment Technology, 2013, 11, 49-58. | 0.7         | 1             |
| 62 | Estimation of Organic Carbon Content of the CyanobacteriumSynechococcussp. by Soft X-ray<br>Microscopy. Geomicrobiology Journal, 2015, 32, 827-835.                                               | 2.0         | 1             |
| 63 | Effects of environmental factors on microalgal biomass production in wastewater using cyanobacteriaAphanothece clathrataandMicrocystis wesenbergii. Environmental Technology (United) Tj ETQq1 1  | . 027.84314 | 4 rgBT /Overl |
| 64 | Application of a Dialysis-Based pH Control System to a Microbial Fuel Cell Using Ferric-EDTA Electron<br>Acceptor. Journal of Water and Environment Technology, 2017, 15, 207-219.                | 0.7         | 1             |
| 65 | Sediment Assessment in Lake Biwa Littoral Zone. Japanese Journal of Water Treatment Biology, 2017, 53, 23-32.                                                                                     | 0.1         | 1             |
| 66 | Model-based Evaluation of the Effect of Temperature on Electric Power Generation in Microbial Fuel<br>Cells. Journal of Water and Environment Technology, 2021, 19, 161-169.                      | 0.7         | 1             |
| 67 | Impact of Submerged Macrophytes on Behavior of Organic Carbon and Nutrients: An Experimental<br>Study. Journal of Water and Environment Technology, 2021, 19, 35-47.                              | 0.7         | 1             |
| 68 | Influence of Operational Parameters on Rapid Nitrate Removal Using an Electrochemical Flow Cell.<br>International Journal of Environmental Science and Development, 2016, 7, 499-506.             | 0.6         | 1             |
| 69 | Wastewater treatment by ozonation combined with electrolysis. Journal of Environmental Conservation Engineering, 2004, 33, 837-842.                                                               | 0.1         | 0             |
| 70 | Availability of Seawater as A Chloride Source for UV/electro-chlorine Advanced Oxidation Process.<br>Journal of Water and Environment Technology, 2021, 19, 283-293.                              | 0.7         | 0             |