
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shan–Chen interacting vacuum cosmology. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4430-4443.	4.4	3
2	Nonsingular cosmology from an interacting vacuum. Physical Review D, 2022, 105, .	4.7	4
3	Numerical solutions to Einstein's equations in a shearing-dust universe: a code comparison. Classical and Quantum Gravity, 2020, 37, 154001.	4.0	13
4	Latest evidence for a late time vacuum–geodesic CDM interaction. Physics of the Dark Universe, 2020, 29, 100583.	4.9	22
5	Full-sky weak lensing: a nonlinear post-Friedmann treatment. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	5.4	8
6	Quasi-Isotropic Cycles and Nonsingular Bounces in a Mixmaster Cosmology. Physical Review Letters, 2019, 123, 201301.	7.8	10
7	Constraints on the interacting vacuum–geodesic CDM scenario. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3423-3438.	4.4	82
8	fNLâ~'gNL mixing in the matter density field at higher orders. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	8
9	A relativistic signature in large-scale structure. Physics of the Dark Universe, 2016, 13, 30-34.	4.9	26
10	Effects of Nonlinear Inhomogeneity on the Cosmic Expansion with Numerical Relativity. Physical Review Letters, 2016, 116, 251302.	7.8	88
11	Lagrangian theory for cosmic structure formation with vorticity: Newtonian and post-Friedmann approximations. Physical Review D, 2016, 94, .	4.7	17
12	Missing link: A nonlinear post-Friedmann framework for small and large scales. Physical Review D, 2015, 92, .	4.7	44
13	The fully non-linear post-Friedmann frame-dragging vector potential: magnitude and time evolution from <i>N</i> -body simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1727-1742.	4.4	28
14	Galaxy bias and gauges at second order in general relativity. Classical and Quantum Gravity, 2015, 32, 175019.	4.0	25
15	Computing general-relativistic effects from Newtonian N-body simulations: Frame dragging in the post-Friedmann approach. Physical Review D, 2014, 89, .	4.7	60
16	NON-GAUSSIAN INITIAL CONDITIONS IN ^î /CDM: NEWTONIAN, RELATIVISTIC, AND PRIMORDIAL CONTRIBUTIONS. Astrophysical Journal, 2014, 785, 2.	4.5	51
17	Indications of a Late-Time Interaction in the Dark Sector. Physical Review Letters, 2014, 113, 181301.	7.8	225
18	EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE. Astrophysical Journal Letters, 2014, 794, L11.	8.3	36

#	Article	IF	CITATIONS
19	Phenomenological models for unified dark matter with fast transition. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2907-2916.	4.4	17
20	Disentangling non-Gaussianity, bias, and general relativistic effects in the galaxy distribution. Physical Review D, 2012, 85, .	4.7	106
21	Redshift and distances in a ĥCDM cosmology with non-linear inhomogeneities. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1937-1950.	4.4	35
22	Exact nonlinear inhomogeneities inĥCDMcosmology. Physical Review D, 2011, 83, .	4.7	30
23	Unified Dark Matter scalar field models with fast transition. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 018-018.	5.4	29
24	Unified Dark Matter models with fast transition. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	5.4	38
25	A solution to the anisotropy problem in bouncing cosmologies. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 014-014.	5.4	26
26	Affine parametrization of the dark sector: Constraints from WMAP5 and SDSS. Physical Review D, 2008, 78, .	4.7	25
27	Late universe dynamics with scale-independent linear couplings in the dark sector. Physical Review D, 2008, 78, .	4.7	43
28	Affine equation of state from quintessence and k-essence fields. Classical and Quantum Gravity, 2007, 24, 5413-5425.	4.0	47
29	The Einstein static universe in loop quantum cosmology. Classical and Quantum Gravity, 2007, 24, 6243-6253.	4.0	75
30	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>l̂>(/mml:mi><mml:mi>l̂+</mml:mi><mml:mi>DM</mml:mi></mml:mi></mml:math> : Observational constraints on unified dark matter with constant speed of sound. Physical Review D, 2007, 76, .	4.7	52
31	Cosmological dynamics and dark energy with a quadratic equation of state: Anisotropic models, large-scale perturbations, and cosmological singularities. Physical Review D, 2006, 74, .	4.7	43
32	Towards a wave-extraction method for numerical relativity. IV. Testing the quasi-Kinnersley method in the Bondi-Sachs framework. Physical Review D, 2006, 73, .	4.7	19
33	Cosmological dynamics and dark energy with a nonlinear equation of state: A quadratic model. Physical Review D, 2006, 74, .	4.7	95
34	Coupling of radial and axial nonradial oscillations of compact stars: Gravitational waves from first-order differential rotation. Physical Review D, 2006, 73, .	4.7	37
35	Rotating neutron stars: an invariant comparison of approximate and numerical space-time models. Monthly Notices of the Royal Astronomical Society, 2005, 358, 923-938.	4.4	115
36	Newman-Penrose quantities as valuable tools in astrophysical relativity. AIP Conference Proceedings, 2005, , .	0.4	0

#	Article	IF	CITATIONS
37	The speciality index as invariant indicator in the BKL mixmaster dynamics. Classical and Quantum Gravity, 2005, 22, 1763-1768.	4.0	9
38	Coupling of radial and nonradial oscillations of relativistic stars: Gauge-invariant formalism. Physical Review D, 2005, 71, .	4.7	23
39	Towards a wave-extraction method for numerical relativity. I.ÂFoundations and initial-value formulation. Physical Review D, 2005, 72, .	4.7	33
40	Towards a wave-extraction method for numerical relativity. II.ÂThe quasi-Kinnersley frame. Physical Review D, 2005, 72, .	4.7	36
41	Coupling of Radial and Non-Radial Oscillations of Neutron Stars. , 2005, , 83-86.		Ο
42	Large-scale perturbations on the brane and the isotropy of the cosmological singularity. Physical Review D, 2004, 70, .	4.7	17
43	Are braneworlds born isotropic?. Physical Review D, 2004, 69, .	4.7	21
44	NonlinearN-parameter spacetime perturbations: Gauge transformations. Physical Review D, 2004, 70, .	4.7	32
45	Petrov classification of perturbed spacetimes: the Kasner example. Classical and Quantum Gravity, 2004, 21, 4833-4843.	4.0	16
46	Transverse Frames for Petrov Type I Spacetimes: A General Algebraic Procedure. General Relativity and Gravitation, 2003, 35, 1351-1363.	2.0	3
47	Magnetic field amplification in cold dark matter anisotropic collapse. Monthly Notices of the Royal Astronomical Society, 2003, 338, 785-789.	4.4	31
48	Covariant fluid dynamics: a long wavelength approximation. Classical and Quantum Gravity, 2003, 20, 5275-5290.	4.0	14
49	Two-parameter nonlinear spacetime perturbations: gauge transformations and gauge invariance. Classical and Quantum Gravity, 2003, 20, 535-556.	4.0	24
50	Singularities on the brane are not isotropic. Physical Review D, 2002, 66, .	4.7	11
51	SECOND ORDER PERTURBATIONS OF FLAT DUST FLRW UNIVERSES WITH A COSMOLOGICAL CONSTANT. International Journal of Modern Physics A, 2002, 17, 4239-4244.	1.5	7
52	Cosmic no-hair: nonlinear asymptotic stability of de Sitter universe. Classical and Quantum Gravity, 2002, 19, L23-L29.	4.0	32
53	Gravitational Collapse on the Brane: A No-Go Theorem. Physical Review Letters, 2001, 87, 231302.	7.8	118
54	Observables and gauge invariance in the theory of nonlinear spacetime perturbations. Classical and Quantum Gravity, 1999, 16, L29-L36.	4.0	41

#	Article	IF	CITATIONS
55	Gauge Dependence in the Theory of Non-Linear Spacetime Perturbations. Communications in Mathematical Physics, 1998, 193, 209-218.	2.2	51
56	Relativistic second-order perturbations of the Einstein–de Sitter universe. Physical Review D, 1998, 58,	4.7	297
57	Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond. Classical and Quantum Gravity, 1997, 14, 2585-2606.	4.0	254
58	Gravitational waves from ultracompact stars: the optical geometry view of trapped modes. Classical and Quantum Gravity, 1997, 14, L189-L194.	4.0	27
59	A Local View of the Observable Universe. Physical Review Letters, 1995, 74, 1916-1919.	7.8	49
60	Dynamics of silent universes. Astrophysical Journal, 1995, 445, 958.	4.5	81
61	Dust–radiation universes: stability analysis. Monthly Notices of the Royal Astronomical Society, 1994, 270, 630-640.	4.4	7
62	Peculiar velocity, cosmic perturbation theory and the cosmic microwave background anisotropy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 323, 118-123.	4.1	13
63	Stability of open universes. Physical Review D, 1993, 47, 738-742.	4.7	8
64	Gauge-invariant perturbations in a scalar field dominated universe. Classical and Quantum Gravity, 1992, 9, 921-945.	4.0	92
65	Cosmological perturbations and the physical meaning of gauge-invariant variables. Astrophysical Journal, 1992, 395, 34.	4.5	204
66	Covariant perturbations in a multifluid cosmological medium. Astrophysical Journal, 1992, 395, 54.	4.5	109
67	Density-gradient-vorticity relation in perfect-fluid Robertson-Walker perturbations. Physical Review D, 1990, 42, 1035-1046.	4.7	129
68	Covariant and gauge-independent perfect-fluid Robertson-Walker perturbations. Physical Review D, 1989, 40, 1819-1826.	4.7	114
69	Covariant and gauge-invariant approach to cosmological density fluctuations. Physical Review D, 1989, 40, 1804-1818.	4.7	434
70	Colliding plane gravitational waves: A class of nondiagonal soliton solutions. Physical Review D, 1987, 36, 1053-1064.	4.7	26
71	Colliding gravitational waves with noncollinear polarization: A class of soliton solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 122, 459-462.	2.1	4