Kei-ichi Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284748/publications.pdf

Version: 2024-02-01

687220 501076 30 855 13 28 citations h-index g-index papers 30 30 30 1955 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5815-E5823.	3.3	104
2	Decreased long-chain acylcarnitines from insufficient \hat{l}^2 -oxidation as potential early diagnostic markers for Parkinsonâ \in [™] s disease. Scientific Reports, 2017, 7, 7328.	1.6	95
3	Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism and Related Disorders, 2013, 19, 15-20.	1.1	77
4	Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain, 2020, 143, 1190-1205.	3.7	72
5	Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology, 2018, 90, e404-e411.	1.5	70
6	Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochemical and Biophysical Research Communications, 2017, 483, 88-93.	1.0	55
7	Mutations in CHCHD2 cause α-synuclein aggregation. Human Molecular Genetics, 2019, 28, 3895-3911.	1.4	48
8	Metabolomicsâ€based identification of metabolic alterations in PARK2. Annals of Clinical and Translational Neurology, 2019, 6, 525-536.	1.7	44
9	Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease. Stem Cell Reports, 2020, 14, 1060-1075.	2.3	43
10	Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Human Molecular Genetics, 2017, 26, 3172-3185.	1.4	42
11	Neuroprotective effects of memantine via enhancement of autophagy. Biochemical and Biophysical Research Communications, 2019, 518, 161-170.	1.0	36
12	A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. IScience, 2020, 23, 101048.	1.9	21
13	p150glued deficiency impairs effective fusion between autophagosomes and lysosomes due to their redistribution to the cell periphery. Neuroscience Letters, 2019, 690, 181-187.	1.0	15
14	Crowned Dens Syndrome Mimicking Meningitis. Internal Medicine, 2010, 49, 2023-2023.	0.3	14
15	p150glued-Associated Disorders Are Caused by Activation of Intrinsic Apoptotic Pathway. PLoS ONE, 2014, 9, e94645.	1.1	14
16	Serum Uric Acid Concentration is Linked to Wearing-off Fluctuation in Japanese Parkinson's Disease Patients. Journal of Parkinson's Disease, 2014, 4, 499-505.	1.5	14
17	Ethambutol neutralizes lysosomes and causes lysosomal zinc accumulation. Biochemical and Biophysical Research Communications, 2016, 471, 109-116.	1.0	14
18	BRUPâ€1, an intracellular bilirubin modulator, exerts neuroprotective activity in a cellular Parkinson's disease model. Journal of Neurochemistry, 2020, 155, 81-97.	2.1	10

#	Article	IF	CITATIONS
19	Effects of donepezil dose escalation in <scp>P</scp> arkinson's patients with dementia receiving longâ€term donepezil treatment: an exploratory study. Psychogeriatrics, 2014, 14, 93-100.	0.6	9
20	Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells. Methods in Molecular Biology, 2017, 1759, 19-27.	0.4	9
21	Plasma metabolite biomarkers for multiple system atrophy and progressive supranuclear palsy. PLoS ONE, 2019, 14, e0223113.	1.1	9
22	Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson's Disease. Scientific Data, 2019, 6, 20.	2.4	8
23	Shared Metabolic Profile of Caffeine in Parkinsonian Disorders. Movement Disorders, 2020, 35, 1438-1447.	2.2	8
24	Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Molecular Brain, 2021, 14, 58.	1.3	8
25	Assessment of Mitophagy in iPS Cell-Derived Neurons. Methods in Molecular Biology, 2017, 1759, 59-67.	0.4	5
26	Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson's Disease. Cells, 2019, 8, 14.	1.8	5
27	Differentiation of Midbrain from Human iPS Cells. Methods in Molecular Biology, 2021, 2322, 73-80.	0.4	3
28	Methods to Induce Small-Scale Differentiation of iPS Cells into Dopaminergic Neurons and to Detect Disease Phenotypes. Methods in Molecular Biology, 2021, , 271-279.	0.4	2
29	Electronystagmographical studies of a patient with spinocerebellar ataxia type 6 (SCA 6) mainly complaining of the positional vertigo. Equilibrium Research, 2017, 76, 162-173.	0.2	1
30	iPSC-based Drug Screening for PARK9, a Familial Parkinson's Disease with Impaired Autophagy. Juntendo Medical Journal, 2021, 67, 450-450.	0.1	0

3