Ruijuan Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284630/publications.pdf

Version: 2024-02-01

١			201674		189892
	76	2,661	27		50
	papers	citations	h-index		g-index
				_	
	77	77	77		4050
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Nâ€Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.	14.9	392
2	Bismuth Oxides with Enhanced Bismuth–Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2020, 10, 743-750.	11.2	234
3	Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy and Environmental Science, 2021, 14, 365-373.	30.8	159
4	Aggregation induced red shift emission of phosphorus doped carbon dots. RSC Advances, 2017, 7, 32225-32228.	3.6	113
5	Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 2020, 10, 4640-4646.	11.2	112
6	Firework-shaped TiO ₂ microspheres embedded with few-layer MoS ₂ as an anode material for excellent performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6392-6401.	10.3	104
7	A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Mikrochimica Acta, 2016, 183, 2517-2523.	5.0	104
8	VO ₂ (p)-V ₂ C(MXene) Grid Structure as a Lithium Polysulfide Catalytic Host for High-Performance Li–S Battery. ACS Applied Materials & Interfaces, 2019, 11, 44282-44292.	8.0	100
9	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	8.0	98
10	Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angewandte Chemie - International Edition, 2021, 60, 25530-25537.	13.8	74
11	Modulating the Interlayer Spacing and Na ⁺ /Vacancy Disordering of P2-Na _{0.67} MnO ₂ for Fast Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage. ACS Applied Materials & Diffusion and High-Rate Sodium Storage.	8.0	69
12	Hierarchical 3-dimensional CoMoO ₄ nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 13776-13785.	10.3	61
13	Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. Journal of Materials Chemistry A, 2017, 5, 25211-25219.	10.3	53
14	Facile synthesis of hollow hierarchical Ni/γ-Al ₂ O ₃ nanocomposites for methane dry reforming catalysis. RSC Advances, 2014, 4, 51184-51193.	3.6	50
15	Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy. Scientific Reports, 2016, 5, 17846.	3.3	49
16	An in-situ room temperature route to CuBil4 based bulk-heterojunction perovskite-like solar cells. Science China Materials, 2019, 62, 519-526.	6.3	47
17	Microstructurally Tailored Thin βâ€Ag ₂ Se Films toward Commercial Flexible Thermoelectrics. Advanced Materials, 2022, 34, e2104786.	21.0	47
18	Thermal Evaporation of Large-Area SnS ₂ Thin Films with a UV-to-NIR Photoelectric Response for Flexible Photodetector Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24940-24950.	8.0	46

#	Article	IF	CITATIONS
19	Highly Stable Waterborne Luminescent Inks Based on MAPbBr ₃ @PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications. ACS Applied Materials & Interfaces, 2021, 13, 20622-20632.	8.0	42
20	Understanding the Effect of Al Doping on the Electrochemical Performance Improvement of the LiMn ₂ O ₄ Cathode Material. ACS Applied Materials & Interfaces, 2021, 13, 45446-45454.	8.0	42
21	Hybrid MnO ₂ /C nano-composites on a macroporous electrically conductive network for supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 16695-16707.	10.3	41
22	3R TaS ₂ Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 2382-2390.	3.1	38
23	Organometal halide perovskite nanocrystals embedded in silicone resins with bright luminescence and ultrastability. Journal of Materials Chemistry C, 2017, 5, 12044-12049.	5.5	36
24	Three-dimensional tetsubo-like Co(OH)2 nanorods on a macroporous electrically conductive network as an efficient electroactive framework for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2629-2639.	10.3	34
25	Facile Synthesis of 3d Transition-Metal-Doped α-Co(OH) ₂ Nanomaterials in Waterâ€"Methanol Mediated with Ammonia for Oxygen Evolution Reaction. ACS Omega, 2019, 4, 16612-16618.	3.5	33
26	Origin of Photocatalytic Activity in Ti ⁴⁺ /Ti ³⁺ Core–Shell Titanium Oxide Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 20949-20959.	3.1	29
27	The preparation, and structural and multiferroic properties of B-site ordered double-perovskite Bi ₂ FeMnO ₆ . Journal of Materials Chemistry C, 2017, 5, 5494-5500.	5.5	28
28	Surface Energy Driven Cubic-to-Hexagonal Grain Growth of Ge2Sb2Te5 Thin Film. Scientific Reports, 2017, 7, 5915.	3.3	25
29	Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO _{2–<i>x</i>} for Enhanced Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 23823-23831.	3.1	25
30	High-stability fluorescent perovskites embedded in PbBrOH triggered by imidazole derivatives in water. Journal of Materials Chemistry C, 2020, 8, 5594-5599.	5.5	24
31	MoO ₂ Sacrificial Layer for Optimizing Back Contact Interface of Cu ₂ ZnSn(S,Se) ₄ Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1191-1200.	2.5	23
32	Improved Tensile Strength of Al-5Ce Alloy by Permanent Magnet Stirring. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1972-1977.	2.2	22
33	Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202812119.	7.1	21
34	High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. Journal of Solid State Electrochemistry, 2017, 21, 2071-2077.	2.5	18
35	Atomic Insights into Ti Doping on the Stability Enhancement of Truncated Octahedron LiMn2O4 Nanoparticles. Nanomaterials, 2021, 11, 508.	4.1	18
36	Positive Role of Inhibiting CZTSSe Decomposition on Intrinsic Defects and Interface Recombination of 12.03% Efficient Kesterite Solar Cells. Solar Rrl, 2022, 6, .	5.8	16

#	Article	IF	CITATIONS
37	Highly efficient field emission from ZnO nanorods and nanographene hybrids on a macroporous electric conductive network. Journal of Materials Chemistry C, 2017, 5, 9296-9305.	5.5	13
38	Microstructure evolution with composition ratio in self-assembled WO ₃ –BiVO ₄ hetero nanostructures for water splitting. Journal of Materials Research, 2017, 32, 2790-2799.	2.6	12
39	Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. Journal of the American Chemical Society, 2021, 143, 6447-6459.	13.7	12
40	Highly Luminescent Copper(I) Halide Phosphors Encapsulated in Fumed Silica for Antiâ€Counterfeiting and Colorâ€Converting Applications. Advanced Optical Materials, 2022, 10, .	7.3	12
41	Evaluation of lattice dynamics, infrared optical properties and visible emissions of hexagonal GeO ₂ films prepared by liquid phase deposition. Journal of Materials Chemistry C, 2017, 5, 12792-12799.	5.5	11
42	Luminescent CH ₃ NH ₃ PbBr ₃ /β yclodextrin Core/Shell Nanodots with Controlled Size and Ultrastability through Hostâ€Guest Interactions. ChemNanoMat, 2019, 5, 1311-1316.	2.8	11
43	Large room-temperature magnetoresistance in epitaxial La0.7Ca0.25Sr0.05MnO3 thin films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 78, 576-581.	2.4	10
44	Size-controlled synthesis of hierarchical bismuth selenide nanoflowers and their photocatalytic performance in the presence of H2O2. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	10
45	Unusually Dispersed Agl Quantum Dots For Efficient HTL-Free CH ₃ NH ₃ Pbl ₃ Photovoltaics. ACS Applied Materials & amp; Interfaces, 2019, 11, 45568-45577.	8.0	10
46	Gradient formation and charge carrier dynamics of CuBil ₄ based perovskite-like solar cells. Sustainable Energy and Fuels, 2020, 4, 2800-2807.	4.9	10
47	Nitrogen-doped multilayered nanographene derived from Ni ₃ C with efficient electron field emission. Journal of Materials Chemistry C, 2016, 4, 9251-9260.	5.5	9
48	Piezoelectric Nanogenerators Based on Helical Carbon Materials and Polyvinyledenedifluoride–Trifluoroethylene Hybrids with Enhanced Energyâ€Harvesting Performance. Energy Technology, 2020, 8, 1901249.	3.8	9
49	Nanometer-Thick Metastable Zinc Blende \hat{I}^3 -MnTe Single-Crystalline Films for High-Performance Ultraviolet and Broadband Photodetectors. ACS Applied Nano Materials, 2020, 3, 12046-12054.	5.0	8
50	Highly Suppressed Thermal Conductivity in Diamond-like Cu ₂ SnS ₃ by Dense Dislocation. ACS Applied Energy Materials, 2021, 4, 8728-8733.	5.1	8
51	Revealing a high-density three-dimensional Ruddlesden–Popper-type fault network in an SmNiO3 thin film. Journal of Materials Research, 2021, 36, 1637-1645.	2.6	7
52	Carbonâ€Confined Indium Oxides for Efficient Carbon Dioxide Reduction in a Solidâ€State Electrolyte Flow Cell. Angewandte Chemie, 0, , .	2.0	7
53	Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures. Journal of Applied Physics, 2017, 122, .	2.5	6
54	Iron Single Atoms Anchored on Carbon Matrix/g-C3N4 Hybrid Supports by Single-Atom Migration-Trapping Based on MOF Pyrolysis. Nanomaterials, 2022, 12, 1416.	4.1	6

#	Article	IF	CITATIONS
55	Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material. Royal Society Open Science, 2017, 4, 171229.	2.4	5
56	Microstructure of Cu2S nanoprecipitates and its effect on electrical and thermal properties in thermoelectric Cu2Zn0.2Sn0.8S3 ceramics. AIP Advances, 2018, 8, 085105.	1.3	5
57	Boosting Oxygen Reduction via Integrated Construction and Synergistic Catalysis of Porous Platinum Alloy and Defective Graphitic Carbon. Angewandte Chemie, 2021, 133, 25734-25741.	2.0	5
58	Microstructure evolution determined by the crystalline phases competition in self-assembled WO3-BiVO4 hetero nanostructures. Journal of Applied Physics, 2018, 123, 085305.	2.5	4
59	Evolution of cation ordering and crystal defects controlled by Zn substitutions in Cu2SnS3 ceramics. AIP Advances, 2018, 8, 105322.	1.3	4
60	The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application. Journal of Materials Science: Materials in Electronics, 2020, 31, 5861-5865.	2.2	4
61	Highly Crystalline and (110)-Oriented n-Type Perovskite Films with Excellent Structural Stability via Cu Doping. Crystal Growth and Design, 2021, 21, 462-470.	3.0	4
62	Extraction of structural and chemical information from high angle annular dark-field image by an improved peaks finding method. Microscopy Research and Technique, 2016, 79, 820-826.	2.2	3
63	Electric field control of magnetism in nickel with coaxial cylinder structure at room temperature by electric double layer gating. Journal of Materials Chemistry C, 2017, 5, 10609-10614.	5.5	3
64	Synthesis of Se nanowires at room temperature using selenourea as Se source. Journal of Materials Science: Materials in Electronics, 2020, 31, 5843-5847.	2.2	3
65	The effect of thickness on texture of Ge2Sb2Te5 phase-change films. Journal of Materials Science: Materials in Electronics, 2020, 31, 5848-5853.	2.2	3
66	The Relationships of Microscopic Evolution to Resistivity Variation of a FIB-Deposited Platinum Interconnector. Micromachines, 2020, 11 , 588 .	2.9	3
67	FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector. Micromachines, 2022, 13, 11.	2.9	3
68	Structure influence on the magnetic properties of La 0.7 Sr 0.3 MnO 3 /La 0.7 Ca 0.3 MnO 3 multilayer thin films fabricated by chemical solution deposition method. Ceramics International, 2017, 43, S497-S500.	4.8	2
69	Plan-view sample preparation of a buried nanodots array by FIB with accurate EDS positioning in thickness direction. Ultramicroscopy, 2019, 207, 112840.	1.9	2
70	High-efficiency synthesis of Cu superfine particles via reducing cuprous and cupric oxides with monoethanolamine and their antimicrobial potentials. Journal of Colloid and Interface Science, 2022, 608, 749-757.	9.4	2
71	Cell-Regulated Hollow Sulfur Nanospheres with Porous Shell: A Dual-Responsive Carrier for Sustained Drug Release. ACS Sustainable Chemistry and Engineering, 2022, 10, 5138-5147.	6.7	2
72	Iron Single Atoms Anchored on Nitrogen-Doped Carbon Matrix/Nanotube Hybrid Supports for Excellent Oxygen Reduction Properties. Nanomaterials, 2022, 12, 1593.	4.1	2

Ruijuan Qi

#	Article	IF	CITATION
73	Rapid Synthesis of Uniform CdSe Nanorods by a Microwave-Assisted Solvothermal Method in Ethylenediamine. Journal of Nanoscience and Nanotechnology, 2020, 20, 6495-6499.	0.9	1
74	Atomic insights into the influence of Bi doping on the optical properties of two-dimensional van der Waals layered InSe. Journal of Physics Condensed Matter, 2022, 34, 224006.	1.8	1
75	Revealing a metastable cubic phase in CoFe2O4–SrTiO3 three-dimensional network heteroepitaxial nanostructure. Journal of Applied Physics, 2020, 128, 225303.	2.5	0
76	Ferro-electric and magnetic properties in Bi ₅ Ti ₃ FeO ₁₅ films by Mn doping. Journal of Materials Chemistry C, 2022, 10, 1003-1009.	5 . 5	0