
julien Parmentier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8284597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the C/N Ratio of Câ€Rich Graphitic Carbon Nitride (g ₃ N ₄) Materials by the Melamine/Carboxylic Acid Adduct Route. Chemistry - A European Journal, 2022, 28, .	1.7	19
2	Porous carbon monoliths from ice-NaOH templated dissolved cellulose. Industrial Crops and Products, 2022, 183, 114961.	2.5	5
3	The within-population variability of leaf spring and autumn phenology is influenced by temperature in temperate deciduous trees. International Journal of Biometeorology, 2021, 65, 369-379.	1.3	18
4	Counterâ€gradient variation of reproductive effort in a widely distributed temperate oak. Functional Ecology, 2021, 35, 1745-1755.	1.7	3
5	CO ₂ electroreduction to fuels on mesoporous carbon-embedded copper nanoparticles. Sustainable Energy and Fuels, 2020, 4, 6045-6053.	2.5	6
6	Synthesis and properties of carbon microspheres based on tannin–sucrose mixtures treated in hydrothermal conditions. Industrial Crops and Products, 2020, 154, 112564.	2.5	16
7	Direct Insight into the Confinement Effect of WS ₂ Nanostructures in an Ordered Carbon Matrix. Crystal Growth and Design, 2020, 20, 2004-2013.	1.4	2
8	Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: A promising material with unexpected mechanism for Li-ion batteries. Carbon, 2019, 143, 598-609.	5.4	47
9	Facile synthesis of soft-templated carbon monoliths with hierarchical porosity for fast adsorption from liquid media. Microporous and Mesoporous Materials, 2018, 272, 155-165.	2.2	24
10	Understanding the Sn Loading Impact on the Performance of Mesoporous Carbon/Snâ€Based Nanocomposites in Liâ€ion Batteries. ChemElectroChem, 2018, 5, 3249-3257.	1.7	12
11	Oneâ€Pot Softâ€Template Synthesis of Nanostructured Copperâ€Supported Mesoporous Carbon FDUâ€15 Electrocatalysts for Efficient CO ₂ Reduction. ChemPhysChem, 2018, 19, 1371-1381.	1.0	15
12	A green direct preparation of a magnetic ordered mesoporous carbon catalyst containing Fe–Pd alloys: application to Suzuki–Miyaura reactions in propane-1,2-diol. New Journal of Chemistry, 2017, 41, 4931-4936.	1.4	10
13	Synthesis of sulfur-doped porous carbons by soft and hard templating processes for CO 2 and H 2 adsorption. Microporous and Mesoporous Materials, 2017, 243, 135-146.	2.2	32
14	Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. Journal of Evolutionary Biology, 2017, 30, 2116-2131.	0.8	49
15	Physicochemical regulation of TGF and VEGF delivery from mesoporous calcium phosphate bone substitutes. Nanomedicine, 2017, 12, 1835-1850.	1.7	7
16	Carbon Support Nanostructuration for CO 2 Electroreduction to Formic Acid on Copper Based Catalysts. ECS Transactions, 2017, 77, 1291-1302.	0.3	0
17	Carbide, nitride and sulfide transition metal-based macrospheres. Journal of the European Ceramic Society, 2017, 37, 1127-1130.	2.8	6
18	Porous WS 2 and W 2 N powders by hard templating with colloidal silica. Ceramics International, 2017, 43, 1443-1448.	2.3	6

#	Article	IF	CITATIONS
19	Hydrothermal Treatment of Tannin: A Route to Porous Metal Oxides and Metal/Carbon Hybrid Materials. Inorganics, 2017, 5, 7.	1.2	18
20	Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process. Inorganics, 2016, 4, 22.	1.2	4
21	Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer. Green Chemistry, 2016, 18, 3265-3271.	4.6	58
22	Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: application to Suzuki reactions. Journal of Materials Chemistry A, 2015, 3, 12297-12306.	5.2	22
23	High surface – Highly N-doped carbons from hydrothermally treated tannin. Industrial Crops and Products, 2015, 66, 282-290.	2.5	44
24	Advances in design and modeling of porous materials. European Physical Journal: Special Topics, 2015, 224, 1653-1653.	1.2	0
25	Electrochemical performances of hydrothermal tannin-based carbons doped with nitrogen. Industrial Crops and Products, 2015, 70, 332-340.	2.5	38
26	Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon, 2015, 90, 63-74.	5.4	67
27	Hydrothermal carbons produced from tannin by modification of the reaction medium: Addition of H + and Ag +. Industrial Crops and Products, 2015, 77, 364-374.	2.5	32
28	Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres. Bioresource Technology, 2014, 151, 271-277.	4.8	55
29	History of the Micelles: A Key Parameter for the Formation Mechanism of Ordered Mesoporous Carbons via a Polymerized Mesophase. Journal of Physical Chemistry C, 2014, 118, 11919-11927.	1.5	9
30	Structure and Sorption Properties of a Zeolite-Templated Carbon with the EMT Structure Type. Langmuir, 2014, 30, 297-307.	1.6	24
31	Thermal exfoliation of fluorinated graphite. Carbon, 2014, 77, 688-704.	5.4	46
32	Preparation of nodular carbon cryogel from simple and inexpensive polycondensation reaction of commercial modified black wattle tannin. Journal of Sol-Gel Science and Technology, 2013, 67, 519-526.	1.1	9
33	Reaction of condensed tannins with ammonia. Industrial Crops and Products, 2013, 44, 330-335.	2.5	63
34	Mesoporous hydroxyapatite by hard templating of silica and carbon foams for protein release. Journal of Materials Science, 2013, 48, 3722-3730.	1.7	17
35	Improved hydrophobicity of inorganic–organic hybrid mesoporous silica with cage-like pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 34-43.	2.3	16
36	Intrusion/Extrusion of Water Into Organic Grafted SBA-15 Silica Materials for Energy Storage. Journal of Nanoscience and Nanotechnology, 2013, 13, 2847-2852.	0.9	23

#	Article	IF	CITATIONS
37	Tuning the Photocatalytic Activity and Optical Properties of Mesoporous TiO ₂ Spheres by a Carbon Scaffold. Journal of Catalysts, 2013, 2013, 1-9.	0.5	7
38	Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon, 2012, 50, 5411-5420.	5.4	127
39	Micro-, Mesoporous Boron Nitride-Based Materials Templated from Zeolites. Chemistry of Materials, 2012, 24, 88-96.	3.2	90
40	Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. Green Chemistry, 2012, 14, 313-316.	4.6	72
41	Structural/textural properties and water reactivity of fluorinated activated carbons. Carbon, 2012, 50, 5135-5147.	5.4	27
42	Microporous carbon adsorbents with high CO2 capacities for industrial applications. Physical Chemistry Chemical Physics, 2011, 13, 16063.	1.3	53
43	Direct Synthesis of <scp><scp>TiN</scp></scp> /Mesoporous Carbon Nanocomposite by Nitridation of a Hybrid Inorganic/Organic Mesostructured Material. Journal of the American Ceramic Society, 2011, 94, 4142-4145.	1.9	8
44	Porous Materials from Polyvinylidene Fluoride/Solvent Molecular Compounds. Soft Materials, 2011, 9, 280-294.	0.8	16
45	Chemical activation of tannin–furanic carbon foams. Industrial Crops and Products, 2010, 31, 327-334.	2.5	37
46	FAU-Type Zeolite Nanocasted Carbon Replicas for CO ₂ Adsorption and Hydrogen Purification. Energy & Fuels, 2010, 24, 3595-3602.	2.5	61
47	Influence of chemical vapour infiltration conditions of acetylene on the structural and textural properties of EMT-type zeolite nanocasted carbon replica. Journal of Materials Science, 2009, 44, 6571-6575.	1.7	9
48	Influence of the carbon precursors on the structural properties of EMT-type nanocasted-carbon replicas. Microporous and Mesoporous Materials, 2009, 126, 101-106.	2.2	22
49	Effect of the zeolite crystal size on the structure and properties of carbon replicas made by a nanocasting process. Carbon, 2009, 47, 1066-1073.	5.4	26
50	Direct Observation of Stacking Faults and Pore Connections in Ordered Cage-Type Mesoporous Silica FDU-12 by Electron Tomography. Journal of the American Chemical Society, 2008, 130, 16800-16806.	6.6	33
51	Structural Peculiarities of Mesostructured Carbons Obtained by Nanocasting Ordered Mesoporous Templates via Carbon Chemical Vapor or Liquid Phase Infiltration Routes. Chemistry of Materials, 2006, 18, 6316-6323.	3.2	16
52	First zeolite carbon replica with a well resolved X-ray diffraction pattern. Chemical Communications, 2006, , 991.	2.2	92
53	The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Microporous and Mesoporous Materials, 2005, 79, 121-128.	2.2	115
54	Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43, 1293-1302.	5.4	658

#	Article	IF	CITATIONS
55	Carbon spheres prepared from zeolite Beta beads. Carbon, 2005, 43, 2474-2480.	5.4	51
56	Organized mesoporous solids: mechanism of formation and use as host materials to prepare carbon and oxide replicas. Comptes Rendus Chimie, 2005, 8, 597-607.	0.2	16
57	The Influence of Microporosity on the Hydrogen Storage Capacity of Ordered Mesoporous Carbons. Adsorption, 2005, 11, 823-827.	1.4	21
58	Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004, 65, 287-293.	1.9	218
59	New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. Journal of Physics and Chemistry of Solids, 2004, 65, 139-146.	1.9	76
60	Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 148-155.	1.7	168
61	Carbon and SiC Macroscopic Beads from Ion-Exchange Resin Templates. Journal of the American Chemical Society, 2004, 126, 13624-13625.	6.6	29
62	Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses. Chemistry of Materials, 2004, 16, 2585-2598.	3.2	171
63	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 279-283.	1.1	67
64	Study of the structural evolutions of mesoporous MCM-48 silica infiltrated with carbon by different techniques. Microporous and Mesoporous Materials, 2003, 62, 87-96.	2.2	22
65	Small-Angle X-ray Scattering and Electron Microscopy Investigation of Silica and Carbon Replicas with Ordered Porosity. Langmuir, 2003, 19, 4303-4308.	1.6	47
66	Template synthesis of a new type of ordered carbon structure from pitch. Journal of Materials Chemistry, 2003, 13, 2535.	6.7	85
67	Characterisation of ordered mesoporous carbons and their MCM-48 silica templates obtained by the replication technique using different carbon infiltration processes. Studies in Surface Science and Catalysis, 2003, 146, 41-44.	1.5	3
68	Organised Mesoporous Silica Synthesised by Nanoscale Duplication of an Ordered Mesoporous Carbon Material Using a Gas Phase Process. Chemistry Letters, 2003, 32, 262-263.	0.7	16
69	Formation of Ordered Mesoporous Carbon Material from a Silica Template by a One-Step Chemical Vapour Infiltration Process. Chemistry Letters, 2002, 31, 1062-1063.	0.7	66
70	Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC. Ceramics International, 2002, 28, 1-7.	2.3	102
71	Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses. Journal of the European Ceramic Society, 2001, 21, 817-824.	2.8	41
72	Influence of iron on the synthesis and stability of yttrium silicate apatite. Solid State Sciences, 2001, 3, 495-502.	1.5	26

#	Article	IF	CITATIONS
73	Phase Transformations in Gel-Derived and Mixed-Powder-Derived Yttrium Disilicate, Y2Si2O7, by X-Ray Diffraction and 29Si MAS NMR. Journal of Solid State Chemistry, 2000, 149, 16-20.	1.4	73
74	Preparation and Characterisation of I _w -Phase in the Y-Si-AI-O-N System. Materials Science Forum, 2000, 325-326, 271-276.	0.3	0
75	Aluminium environments in mullite and an amorphous sol–gel precursor examined by triple-quantum MAS NMR. Journal of Physics and Chemistry of Solids, 1999, 60, 223-228.	1.9	36
76	Fe- and Cr-substituted mullites: Mössbauer spectroscopy and rietveld structure refinement. Solid State Sciences, 1999, 1, 257-265.	1.5	20
77	Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. Scripta Materialia, 1999, 11, 721-731.	0.5	50
78	Influence of the sol-gel synthesis on the formation of spinel MgAl2O4. Materials Research Bulletin, 1998, 33, 1717-1724.	2.7	49
79	Influence of transition metal oxides on sol-gel mullite crystallization. Journal of Alloys and Compounds, 1998, 264, 136-141.	2.8	15
80	Structural Characterisation of New Y-Si-Al-O-N Oxynitride Glass Ceramics. Key Engineering Materials, 1997, 132-136, 794-797.	0.4	6
81	Influence of Synthesis and Composition on Mullite Crystallization. Chemistry of Materials, 1997, 9, 1134-1137.	3.2	19
82	Evidence of Eu3+î—,O2â^' associates by luminescence study of some silicates and aluminosilicates. Journal of Alloys and Compounds, 1997, 262-263, 450-453.	2.8	35